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1.1 Machine and Mechanism:

> Mechanism:

— If a number of bodies are assembled in such a way that the motion of one causes
constrained and predictable motion to the others, it is known as a mechanism.

» Machine:

— A machine is a mechanism or a combination of mechanisms which, apart from
imparting definite motions to the parts, also transmits and modifies the available
mechanical energy into some kind of desired work.

» Analysis:

— Analysis is the study of motions and forces concerning different parts of an existing
mechanism.

» Synthesis:

— Synthesis involves the design of its different parts.

1.2 Types of constrained motion:

1.2.1 Completely constrained motion:

— When the motion between a pair is limited to a definite direction irrespective of
the direction of force applied, then the motion is said to be a completely
constrained motion.

— For example, the piston and cylinder (in a steam engine) form a pair and the
motion of the piston is limited to a definite direction (i.e. it will only reciprocate)
relative to the cylinder irrespective of the direction of motion of the crank.

— Square hole ~ Collar

7MW *

f ‘
Z Square bar L
Fig. 1.1 fig. 1.2
— The motion of a square bar in a square hole, as shown in Fig. 1.1, and the motion
of a shaft with collars at each end in a circular hole, as shown in Fig. 1.2, are also
examples of completely constrained motion.

1.2.2 Incompletely constrained motion:

— When the motion between a pair can take place in more than one direction, then
the motion is called an incompletely constrained motion. The change in the
direction of impressed force may alter the direction of relative motion between
the pair. A circular bar or shaft in acircular hole, as shown in Fig. 1.3, is an
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example of an incompletely constrained motion as it may either rotate or slide in
a hole. These both motions have no relationship with the other.

Round hole

Foot step bearing

Fig. 1.3 FIG. 1.4
1.23 Successfully constrained motion:

— When the motion between the elements, forming a pair, is such that the
constrained motion is not completed by itself, but by some other means, then
the motion is said to be successfully constrained motion. Consider a shaft in a
foot-step bearing as shown in Fig. 1.4.

— The shaft may rotate in a bearing or it may move upwards. This is a case of
incompletely constrained motion. But if the load is placed on the shaft to prevent
axial upward movement of the shaft, then the motion of the pair is said to be
successfully constrained motion. The motion of an I.C. engine

1.3 Types of Links:

— A mechanism is made of a number of resistant bodies out of which some may have
motions relative to the others. A resistant body or a group of resistant bodies with
rigid connections preventing their relative movements is known as a link.

— A link may also define as a member or a combination of members of a mechanism,
connecting other members and having motion relative to them.

— Links may be classified into binary, ternary and quaternary.

Binary link Ternary link Quaternary link
FIG. 1.4 Types of link

1.4 Kinematic Pair:

— When two kinematic links are connected in such a way that their motion is either
completely or successfully constrained, these two links are said to form a kinematic
pair.

— Kinematic pairs can be classified according to:
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Kinematic pairs according to nature of contact:

Lower Pair:

o A pair of links having surfaced or area contact between the members is
known as a lower pair. The contact surfaces of two links are similar.

o Examples: Nut turning on a screw, shaft rotating in a bearing.

Higher Pair:

o When a pair has a point or line contact between the links, it is known as a
higher pair. The contact surfaces of two links are similar.

o Example: Wheel rolling on a surface, Cam and Follower pair etc.

Kinematic pairs according to nature of Mechanical Constraint:

Closed Pair:

o When the elements of a pair are held together mechanically, it is known
as a closed pair. The two elements are geometrically identical; one is solid
and full and the other is hollow or open. The latter not only envelops the
former but also encloses it. The contact between the two can be broken
only by destruction of at least one of the members.

Unclosed Pair:

o When two links of a pair are in contact either due to force of gravity or
some spring action, they constitute an unclosed pair. In this, the links are
not held together mechanically, e.g. cam and follower pair.

Kinematic pairs according to Nature of Relative Motion:

. Sliding pair:

o When two links have a sliding motion relative to another; the kinematic
pair is known as sliding pair.

Turning pair:

o When one link is revolve or turn with respect to the axis of first link, the
kinematic pair formed by two links is known as turning pair.

Rolling pair:

o When the links of a pair have a rolling motion relative to each other, they
form a rolling pair.

. Screw pair:

o If two mating links have a turning as well as sliding motion between them,
they form a screw pair.

Spherical pair:

o When one link in the form of sphere turns inside a fixed link, it is a
spherical pair.

1.5 Types of Joint:

— The usual types of joints in a chain are:

O BinaryJoint
O Ternary Joint
O Quaternary Joint
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T T
Figl1.5. Types of joint

a. Binary Joint:
o If two links are joined at the same connection, it is called a binary joint.
For example, in fig. at joint B
b. TernaryJoint:
o If three links joined at a connection, it is known as a ternary link.
For example point T in fig.
¢. Quaternary Joint:
o If four links joined at a connection, it is known as a quaternary link.
For example point Q in fig.
1.6 Degrees of Freedom:

— An unconstrained rigid body moving in space can describe the following independent
motion:

a. Translational motion along any three mutually perpendicular axes x, y and z.
b. Rotational motion about these axes

z T
F 3 / ‘

Fig.1.6 Degrees of freedom
— Arigid body possesses six degrees of freedom.
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— Degrees of freedom of a pair is defined as the number of independent relative
motions, both translational and rotational, a pair can have.
— DOF =6 — Number of Restraints

1.7 Kinematic chain

— Kinematic chain is defined as the combination of kinematic pairs in which each links
forms a part of two kinematic pairs and the relative motion between the links is
either completely constrained or successfully constrained.

— Examples: slider-crank mechanism

— For a kinematic chain

N=2P-4=2(j+2)/3
— Where N = no. of links, P = no. of Pairs and j = no. of joints
— When,
LHS > RHS, then the chain is locked
LHS = RHS, then the chain is constrained
LHS < RHS, then the chain is unconstrained

1.8 Kutzbach Criterion

— DOF of a mechanism in space can be determined as follows:

— In mechanism one link should be fixed. Therefore total no. of movable links are in
mechanism is (N-1)

— Any pair having 1 DOF will impose 5 restraints on the mechanism, which reduces its
total degree of freedom by 5P1.

— Any pair having 2 DOF will impose 4 restraints on the mechanism, which reduces its
total degree of freedom by 4P2

— Similarly, the other pairs having 3, 4 and 5 degrees of freedom reduce the degrees of
freedom of mechanism. Thus,

— Thus,

F=6(N-1)-5P1-4P,-3P3—2Ps-1P5-0P¢
— Hence,
F=6(N-1)-5P1—4P,-3P3-2P;-1Ps
— The above equation is the general form of Kutzbach criterion. This is applicable to
any type of mechanism including a spatial mechanism.

1.9 Grubler’s criterion

— If we apply the Kutzbach criterion to planer mechanism, then equation of Kutzbach
criterion will be modified and that modified equation is known as Grubler’s Criterion
for planer mechanism.

— Therefore in planer mechanism if we consider the links having 1 to 3 DOF, the total
number of degree of freedom of the mechanism considering all restraints will
becomes,

F=3(N-1)-2P,-1P;
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— The above equation is known as Grubler’s criterion for planer mechanism.

— Sometimes all the above empirical relations can give incorrect results, e.g. fig (a) has
5 links, 6 turning pairs and 2 loops. Thus, it is a structure with zero degree of
freedom.

Fig. 1.7

— However, if the links are arranged in such a way as shown in fig. (b), a double
parallelogram linkage with one degree of freedom is obtained. This is due to the
reason that the lengths of links or other dimensional properties are not considered
in these empirical relations.

— Sometimes a system may have one or more link which does not introduce any extra
constraint. Such links are known as redundant links and should not be counted to
find the degree of freedom. For example fig. (B) has 5 links, but the function of the
mechanism is not affected even if any one of the links 2, 4 and 5 are removed. Thus,
the effective number of links in this case is 4 with 4 turning pairs, and thus 1 degree
of freedom.

— In case of a mechanism possessing some redundant degree of freedom, the effective
degree of freedom is given by,

F=3(N-1)-2P1-1P>-F;

— Where Fr=no. of redundant degrees of freedom

1.10 The Four-Bar chain

— A four bar chain is the most fundamental of the plane kinematic chains. It is a much
preffered mechanical device for the mechanisation and control of motion due to its
simplicity and versatility. Basically, it consists of four rigid links which are connected
in the form of a quadrilateral by four pin-joints.

— When one of the link fixed, it is known as mechanism or linkage. A link that makes
complete revolution is called the crank. The link opposite to the fixed link is called
coupler, and the forth link is called a lever or rocker if it oscillates or another crank if
it rotates.

— It is impossible to have a four-bar linkage if the length of one of the link is greater
than the sum of other three. This has been shown in fig.
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Fig. 1.7 Four bar chain

1.11 Grashof’s law:

We have already discussed that the kinematic chain is a combination of four or more
kinematic pairs, such that the relative motion between the links or elements is
completely constrained The simplest and the basic kinematic chain is a four bar chain
or quadric cycle chain, as shown in Fig. 5.18. It consists of four links, each of them
forms a turning pair at A, B, C and D. The four links may be of different lengths.
According to Grashof’s ’s law for a four bar mechanism, the sum of the shortest and
longest link lengths should not be greater than the sum of the remaining two link
lengths if there is to be continuous relative motion between the two links.

e e
3 _— |
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Fig. 1.8 Grashof’s law

A very important consideration in designing a mechanism is to ensure that the input
crank makes a complete revolution relative to the other links. The mechanism in
which no link makes a complete revolution will not be useful. In a four bar chain, one
of the links, in particular the shortest link, will make a complete revolution relative to
the other three links, if it satisfies the Grashof’s law. Such a link is known as crank or
driver. In Fig.5.18, AD (link 4) is a crank.

The link BC (link 2) which makes a partial rotation or oscillates is known as lever or
rocker or follower and the link CD (link 3) which connects the crank and lever is
called connecting rod or coupler. The fixed link AB (link 1) is known as frame of the
mechanism.
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1.12 Inversion of Mechanism:

— When the number of links in kinematic chain is more than three, the chain is known
as mechanism. When one link of the kinematic chain at a time is fixed, give the
different mechanism of the kinematic chain. The method of generating different
mechanism by fixing a link is called the inversion of mechanism.

— The number of inversion is equal to the numbers of links in the kinematic chain.

— The inversion of mechanism may be classified as:

a. Inversion of four-bar chain
b. Inversion of single slider crank chain
C. Inversion of double slider crank chain

1.13 Inversion of Four-Bar chain

1.13.1 First inversion: coupled wheel of locomotive

— The mechanism of a coupling rod of a locomotive (also known as double crank
mechanism) which consists of four links is shown in Fig.

s /—Wheels —

- - Link 3
, . x ,, = G Ff Link 2
II I h??ﬁ???fff;;gffﬁf#??“ .l :
WA e (B )
No— N

Fig. 1.9 coupled wheel of locomotive
— In this mechanism, the links AD and BC (having equal length) act as cranks and
are connected to the respective wheels. The link CD acts as a coupling rod and
the link AB is fixed in order to maintain a constant centre to Centre distance
between them. This mechanism is meant for transmitting rotary motion from
one wheel to the other wheel.

1.13.2 Second inversion: Beam Engine

— A part of the mechanism of a beam engine (also known as cranks and lever
mechanism) which consists of four links is shown in Fig. 1.10.

— In this mechanism, when the crank rotates about the fixed centre A, the lever
oscillates about a fixed centre D. The end E of the lever CDE is connected to a
piston rod which reciprocates due to the rotation of the crank.
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Fig. 1.10 beam engine

In other words, the purpose of this mechanism is to convert rotary motion into
reciprocating motion.

1.13.3 Third inversion: watts indicator mechanism

A Watt’s indicator mechanism (also known as Watt's straight line mechanism or
double lever mechanism) which consists of four links is shown in Fig.

The four links are: fixed link at A, link AC, link CE and link BFD. It may be noted
that BF and FD form one link because these two parts have no relative motion
between them. The links CE and BFD act as levers.

The displacement of the link BFD is directly proportional to the pressure of gas or
steam which acts on the indicator plunger. On any small displacement of the
mechanism, the tracing point E at the end of the link CE traces out approximately
a straight line.

o
Link 2 i m=L D
¢ C .s'-‘“'“-,. y
; - ¥ ~
B": e H.h-"'wf D —"_’:TEr
;S 7~ F' ¢ e .
e ~_ALink3
Lmk‘ITLi:W__F--__\__HEhl -
=
A Link 4 !
Indicator _z 3
plunger f‘_mx _
74 ‘H «+— Indicator

SR cylinder

Fig. 1.11 watts indicator mechanism
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1.14 The slider-crank chain

When one of the turning pairs of a four-bar chain is replaced by a sliding pair, it
becomes a single slider-crank chain or simply a slider-crank chain.

It is also possible to replace two sliding pairs of a four-bar chain to get a double
slider-crank chain. In a slider-crank chain, the straight line path of the slider may be
passing through the fixed pivot O or may be displaced.

The distance e between the fixed pivot O and the straight line path of the slider is
called the offset and the chain so formed an offset slider-crank chain.

Different mechanisms obtained by fixing different links of a kinematic chain are
known as its inversions.

1.14.1 First inversion

— This inversion is obtained when link 1 is fixed and links 2 and 4 are made the
crank and slider respectively. (fig.a)

— Applications:
a Reciprocating engine
b Reciprocating compressor

e — %-4

NSNS

1 S

Fig. 1.12 first inversion

1.14.2 Second inversion

— Fixing of the link 2 of a slider-crank chain results in the second inversion.
— Applications:

a Whitworth quick-return mechanism
b Rotary engine

1.14.3 Third Inversion

— By Fixing of the link 3 of the slider-crank mechanism, the third inversion is

obtained. Now the link 2 again acts as a crank and the link 4 oscillates.

— Applications:

a Oscillating cylinder engine
b Crank and slotted-lever mechanism

1.14.4 Fourth Inversion

— If the link 4 of the slider-crank mechanism is fixed, the fourth inversion is

obtained. Link 3 can oscillates about the fixed pivot B on the link 4. This makes
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the end A of the link 2 to oscillate about B and the end O to reciprocate along the
axis of the fixed link 4.
— Application: Hand Pump

o
2 1 2
1 A
‘{ F
3 3
4
L~
Jdr B o j
1 L~
4 g Z
7 [l 2
g N
(a) (b)

Fig. 1.13 hand pump

— Fig.1.13 shows a hand-pump. Link 4 is made in the form of a cylinder and a
plunger fixed to the link 1 reciprocates in it.

1.15 Whitworth Quick-Return Mechanism:

— This mechanism used in shaping and slotting machines.

— In this mechanism the link CD (link 2) forming the turning pair is fixed; the driving
crank CA (link 3) rotates at a uniform angular speed and the slider (link 4) attached to
the crank pin at A slides along the slotted bar PA (link 1) which oscillates at D.

— The connecting rod PR carries the ram at R to which a cutting tool is fixed and the
motion of the tool is constrained along the line RD produced.

Connecting rod
'

ST ( p Cutting stroke
=LY « Return stroke
A2 % P 4 P2 ;A1 Ram «—Tool
=R =T s o ———— ==
“~. BK _.-2m X R R
Slotted bar b X ’/:\‘ ! \ Line of
(Link 1) — [ /8%%}C >Fixed , stroke
™/ 7<-[0 -7 (Link 2)
Slider G i
(Link 4) -_-.,.{ [():rrlg;]nkg /
< _ (Link3) " -7
‘L_A = i

Fig. 1.14 Whitworth quick returns mechanism
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— The length of effective stroke = 2 PD. And mark P1R1 = P2 R2 = PR.

time of cutting _a a _360° —Q

timeof return Q  360°— a Q

1.16 Rotary engine

— Sometimes back, rotary internal combustion engines were used in aviation. But now-
a-days gas turbines are used in its place.

Connecting rod
(Link 4)

_ Fixed crank
(Joly \ (Link 2)

Piston __ ("> s

(Link 3)

Cylinder J

(Link 1) ]
L

Fig. 1.15 rotary engine

— It consists of seven cylinders in one plane and all revolves about fixed center D, as
shown in Fig. 5.25, while the crank (link 2) is fixed. In this mechanism, when the
connecting rod (link 4) rotates, the piston (link 3) reciprocates inside the cylinders
forming link 1.

1.17 Oscillating cylinder engine

— The arrangement of oscillating cylinder engine mechanism, as shown in Fig. Is used
to convert reciprocating motion into rotary motion.

Piston rod
‘“de‘ (ngk 1)‘__}____,\ =y
\ o0 i \ o %
O\\l,'\(\\" M ez -.’/E_r\ank X
\ a \ (Link 2)
’ e ~77”7 Srhrr s '
'-",f“g\ =" | .
Connecting * R

ro "
(Link 3) s ™

Fig. 1.16 oscillating cylinder engine
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In this mechanism, the link 3 forming the turning pair is fixed. The link 3 corresponds
to the connecting rod of a reciprocating steam engine mechanism. When the crank
(link 2) rotates, the piston attached to piston rod (link 1) reciprocates and the
cylinder (link 4) oscillates about a pin pivoted to the fixed link at A.

1.18 Crank and slotted-lever Mechanism

This mechanism is mostly used in shaping machines, slotting machines and in rotary
internal combustion engines.

In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed, as shown
in Fig. The link 3 corresponds to the connecting rod of a reciprocating steam engine.
The driving crank CB revolves with uniform angular speed about the fixed center C. A
sliding block attached to the crank pin at B slides along the slotted bar AP and thus
causes AP to oscillate about the pivoted point A.

A short link PR transmits the motion from AP to the ram which carries the tool and
reciprocates along the line of stroke R1R2. The line of stroke of the ram (i.e. R1R2) is
perpendicular to AC produced.

——» Cutting stroke
<4— Return stroke

tod [_— . Line ol

Connecting

— ,, .
-"Ro

7’

7

p1._é"‘__ ._xln,._ 2 DI

3 e Y

‘ . / P
Sllder (Link 1)

_Crank (Link 2)

\\

6

B \\E* 9B
s o et W | 4 <
(90°— E) NL & Fixed
Slotted b v, (Link 3)
otted bar \ &
(Link 4) G
A

Fig.1.17 Crank and slotted lever mechanism

In the extreme positions, AP1 and AP2 are tangential to the circle and the cutting
tool is at the end of the stroke. The forward or cutting stroke occurs when the crank
rotates from the position CB1 to CB2 (or through an angle B) in the clockwise
direction. The return stroke occurs when the crank rotates from the position CB2 to
CB1 (or through angle a) in the clockwise direction. Since the crank has uniform
angular speed, therefore,

time of cutting  Q _ Q _360° —

time of return a 360°—Q a

SPINTRONIC TECHNOLOGY & ADVANCE TECHNOLOGY



- Since the tool travels a distance of R1R2 during cutting and return stroke, therefore
travel of the tool or length of stroke

= R1R2 = P1P2= 2P1Q = 2AP1sin £P1AQ

— 24P1sin(90° — ) = 24P cos @ (~AP1 = AP)
2 2
= 2AP x CB1 (~cos & = CB1)
Ac 2 ac
— 2AP x CB (~CB1 = CB)
ac

- From Fig. 1.18, we see that the angle B made by the forward or cutting stroke is
greater than the angle adescribed by the return stroke. Since the crank rotates with

uniform angular speed, therefore the return stroke is completed within shorter time.
Thus it is called quick return motion mechanism.

1.19 Double Slider Crank Chain

- Afour-bar chain having two turning and two sliding pairs such that two pairs of the
same kind are adjacent is known as a double-slider-crank chain [Fig 1.18].

I 7T7 777777

Fig 1.18

1.19.1 First Inversion

— This inversion is obtained when the link 1 is fixed and the two adjacent pairs 23 and
34 are turning pairs and the other two pairs 12 and 41 sliding pairs.

— Application:
Elliptical trammel




Elliptical Trammel
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Fig 1.19

— Fig 1.19 shows an elliptical trammel in which the fixed link 1 is in the form of guides
for sliders 2 and 4. With the movement of the sliders, any point C on the link 3,
except the midpoint of AB will trace an ellipse on a fixed plate. The midpoint of AB
will trace a circle.

— Let at any instant, the link 3 make angle 6 with the X-axis. Considering the
displacements of the sliders from the centre of the trammel,

x =BCcos@andy = ACsin @
;—C=C059and X =sin6
AC

— Squaring and adding,
(*)2+4+ (2)2=cos26 +sinz2f =1
BC AC

— Thisis the equation of an ellipse. Therefore, the path traced by C is an ellipse with
the semi -major and semi-minor axes being equal to AC and BC respectively.
— When Cis the midpoint AB; AC = BC,
and
()32+(»)2=1 or x24+y2=1
BC AC

which is the equation of the circle with AC (=BC) as the radius of the circle.

1.19.2 Second Inversion

— If any of the slide-blocks of the first inversion is fixed, the second inversion of the
double-slider-crank chain is obtained.

— When the link 4 is fixed, the end B of the crank 3 rotates about A and the link 1
reciprocates in the horizontal direction.

— Application:
Scotch Yoke




Scotch Yoke

— Ascotch-yoke mechanism (Fig. 1.20) is used to convert the rotary motion into a
sliding motion.

— Asthe crank 3 rotates, the horizontal portion of the link 1 slides or reciprocates in
the fixed link 4.

prom—
18
3 )
A/z\ LLLLLL
7o) ey = o
77l’747 rrrry7
4 1 4
Fig 1.20

1.19.3 Third Inversion

— This inversion is obtained when the link 3 of the first inversion is fixed and the link 1
is free to move.

— Application:
Oldham’s Coupling

Oldham’s Coupling

— Figure 1.21 shows an actual Oldham's coupling which is used to connect two parallel
shafts when the distance between their axes is small.

— The two shafts have flanges at the ends and are supported in the fixed bearings
representing the link 3. In the flange 2, a slot is cut in which the tongue X of the link 1
is fitted and has a sliding motion. Link 1 is made circular and has another tongue Y at
right angles to the first and which fits in the recess of the flange of the shaft 4. Thus,
the intermediate link 1 slides in the two slots in the two flanges while having the
rotary motion.

— As mentioned earlier, the midpoint of the intermediate piece describes a circle with
distance between the axes of the shafts as diameter. The maximum sliding velocity
of each tongue in the slot will be the peripheral velocity of the midpoint of the
intermediate disc along the circular path.

— Maximum sliding velocity = peripheral velocity along the circular path

= angular velocity of shaft x distance between shafts

<,

Fig 1.21




1.20 Examples

1 For the kinematic linkages shown in following fig. calculate the following:
The numbers of binary links (Nb)
The numbers of ternary links (Nt)
The numbers of other (quaternary) links (No)
The numbers of total links (n)
The numbers of loops (L)
The numbers of joints or pairs (P1)
The numbers of degrees of freedom (F)

a Nb=4;Nt=4; No=0; N=8; L=4; P1=11 (by counting)
Pi=(N+L-1)=11
F=3(N-1)-2P1
F=3(8—1)-2x11=-1or,vVv
F=N—-(2L+1)
F=8-(2x4+1)=-1

b Nb=4;Nt=4;No=0; N=8; L=3; P1=10 (by counting)
Pi=(N+L-1)=10
F=3(N-1)-2P1
F=3(8—-1)—-2x10=1or,




F=N-(2L+1)
F=8-(2x3+1)=1

¢ Nb=7;Nt=2;No=2; N=11;L=5; P1=15 (by counting)
F=N-(2L+1)
F=11-(2x5+1)=0

2 Acrank and slotted lever mechanism used in a shaper has a centre distance of 300
mm between the centre of oscillation of the slotted lever and the centre of
rotation of the crank. The radius of the crank is 120 mm. Find the ratio of the time
of cutting to the time of return stroke.
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Given: AC =300 mm, CB1=120 mm
sin ZCAB1 = sin (90° — @) = (B1 =120 = (.4

2 AC 300
@ -1
2CAB1=90° — 7 =sin 0.4 = 23.6°
a 2
_ =90°—23.6° = 66.4°
2

a=12X%X664°=132.8°

Time of Cutting Stroke __ 360°—a __ 360°-132.8° 1.72
Time of Return Stroke a 132.8° ’

3 In acrank and slotted lever quick return motion mechanism, the distance between
the fixed centres is 240 mm and the length of the driving crank is 120 mm. Find the
inclination of the slotted bar with the vertical in the extreme position and the time
ratio of cutting stroke to the return stroke. If the length of the slotted bar is 450
mm, find the length of the stroke if the line of stroke passes through the extreme
positions of the free end of the lever.




Rq Line of stroke Ro

Tl g Q T
P4 P>
1 ~h

C
<
Q v

B4 > 2 E 4 Bo
o O C
(90—3)/’3—:
A

Given: AC =240 mm, CB1 =120 mm, AP1 =450 mm

Inclination of the slotted bar with the vertical

Let £ CAB; = Inclination of the slotted bar with the vertical
a B1C 120

sin£ZCAB1 =sin(90°—- )= _ - ____ 05
2 AC 240

Time ratio of cutting stroke to the return stroke

90° —a = 30°
2

2= 90°—-30° = 60°
2

a=2x60°=120°

Time of Cutting Stroke __ 360°—a __ 360°—120° __
Time of Return Stroke a 120°

The distance between the two parallel shafts connected by Oldham’s Coupling is 25 mm.
The speed of the driving shaft is 250 rpm. Find the maximum speed of sliding of the tongue
of the intermediate piece in the slot in the flange.

2nxXN
60
Where N is the number of revolutions per min.

and w is the angular velocity of shafts in radians/sec.

Angular speed of the shaft, w =

Therefore, w = 22x250 = 26.18 radians/sec.
60

Maximum speed of sliding, v = d. w
where v is the velocity of sliding, d is the distance between the axes of parallel shafts.

Therefore, v = 25 X 26.18 = 654.5 mm/sec = 0.6545 m/sec
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Synthesis and Analysis of Mechanisms




2.1.1 Type, Number and Dimensional Synthesis:

TYPE SYNTHESIS: Type Synthesis refers to the kind of mechanism selected; it might be a
linkage, a geared system, belts and pulleys, or even a cam system. This beginning phase of
total design problem usually involves design factors such as manufacturing processes,
materials,, safety space and economics. The study of kinematics is usually only slightly
involved in type synthesis.

NUMBER SYNTHESIS: Number synthesis deals with the number of links, and the number
of joints or pairs that are required to obtain a certain mobility. Number synthesis is the
second step in design following type synthesis.

DIMENSIONAL SYNTHESIS: The third step in design, determining the dimensions of
individual link is called dimensional synthesis.

2.1.2 Function Generation, Path Generation and Body Guidance:

FUNCTION GENERATION:

A frequent requirement in design is that of causing an output member to rotate, oscillate or
reciprocate according to a specified function of time or function of input motion. This is
called function generation.

A simple example is that of synthesizing a four-bar linkage to generate the function y=f(x). In
this case x would represent the motion (crank angle) of input crank, and the linkage would
be designed so that the motion (angle) of the output rocker would approximate the function

y.

Other examples of function generation are as follows:

1. In a conveyor line the output member of a mechanism must move at the constant
velocity of the conveyor, while performing some operations — Ex. bottle capping,
return, pick up the next cap and repeat the operation.

2. The output member must pause or stop during its motion cycle to provide time for
another event. The second event might be a sealing, stapling, or fastening operation
of some kind.

3. The output member must rotate at a specified non uniform velocity function
because it is geared to another mechanism that requires such a rotating motion.

PATH GENERATION:

A second type of synthesis problem is called path generation. This refers to a problem in
which a coupler point is to generate a path having a prescribed shape. Common
requirements are that a portion of the path be a circular arc, elliptical or straight line.
Sometimes it is required that the path cross over itself as in a figure-of-eight.

BODY GUIDANCE:

The third general class of synthesis problem is called body guidance. Here we are interested
in moving an object from one position to another. The problem may call for a simple
translation or combination of translation and rotation (JCB example). In the construction



industry, for example, heavy parts such as scoops and bulldozer blades must be moved
through a series of prescribed positions.

2.1.3 Two-Position Synthesis of Slider-Crank Mechanismes:

(a)Centered slider-crank mechanism (b) General or offset slider-crank mechanism

Fig. 2.1 Slider Crank Mechanism

The centered slider-crank mechanism of the Fig (a) has a stroke BiB; equal to twice the
crank radius ra (B1B2 = 2r). As shown, the extreme positions of B1 and B, also called limiting
positions of the slider, are found by constructing circular arcs through O; of length (r3 - r)
and (rs+ ry), respectively.

— In general the centered slider crank mechanism must have r3 > r,. However, the special
case of r1 = ry results in the isosceles slider-crank mechanism, in which the slider
reciprocates through O; and the stroke 4 X r».

— All points on the coupler of the isosceles slider crank mechanism generate elliptical
paths. The paths generated by the points on the coupler of the slider crank of Fig (a) are
not elliptical, but they are always symmetrical about the axis O2B.

The linkage of Fig (b) is called general or offset slider crank mechanism certain special

effects can be obtained by changing the offset distance e. Ex. the stroke BiB; is always

greater than 2 X crank radius r.

— This feature can be used to synthesize quick return mechanism where a slower working
stroke is desired. Also the crank angle required to execute the forward stroke is different
from that the return stroke.

Let distance Bi1B,= (r3 + 12 ) cos@1 — (r3-r2) cos @2
=13 c0s @1 + 12 cos @1 — r3 cos @z + 12 cos B2

=12(cos @1 + cos @2) + r3(cos @1 — cos B2)

v

Positive; cos @1 > cos @

Stoke B1B, > 212




2.1.4 Two Position Synthesis of Crank-And-Rocker Mechanism:

Fig. 2.2(a) Extreme Position of Crank &Rocker Mechanism

— The limiting positions of the rocker in a crank and rocker mechanism are shown as points
B1 and B; (Found same as slider crank linkage).

— In this particular case the crank executes the angle W while the rocker moves from B to
B,. Note on the return stroke that the rocker swing from B, to B; through the same angle
but the crank moves through the angle (360° — W).

— There are many cases in which crank and rocker mechanism is superior to cam and
follower system. Among the advantages over cam system are smaller forces involved,
the elimination of retaining spring, and the closer clearance because of the use of
revolute pairs.

Cutting strokeB2 B1 (@ angle on rocker) W angle on crank
Return stroke-B: B (@ angle on rocker) 360° — W angle on crank

o= F _180+a fh=—
360 —
2n—f 180-a w fzzﬂw_f}

Fig. 2.2 (b) Synthesis of a four bar linkage to generate rocker angle @




To synthesis a crank and rocker mechanism for specified value of @ and «, locate the
point O4 in the figure (b) and choose any desired rocker length rs, then draw the two
positions 04B1 and 04B; of link 4 separated by the angle @ as given. Through B; construct
any line X Then through B> construct the line Y at given angle a to the line X. The
intersection of these two lines defines the location of the crank pivot O,. Because line X
was originally chosen arbitrarily, there are an infinite number of solutions of this
problem.

As shown in fig (b) the distance B,C is 2r; or twice the crank length. So we bisect this
distance to find r».

Problem — 1: Four bar Crank-Rocker quick return linkage for specified time ratio. Time

ratio = 1:1.25 with 45° output rocker motion. Design the synthesis.

(Design of machinery-R. L. Norton)

Solution:
a
Tr = 7 a+ f =360°
Construction angle § = [180 — «af

= 180 — B|

o vk wnN

Ground

(a) Construction of a quick-return (b) The finished linkage in its
Grashof crank-rocker two toggle positions

Draw the output link O4B in both extreme positions, in any convenient location, such
that the desired angle of motion 84, is subtended.

Calculate «, B, and & using equations. In this example, « = 160°, § = 200°,6 = 20°.
Draw a construction line through point B; at any convenient angle.

Draw a construction line through point B, at angle § from the first line.

Label the intersection of the two construction lines O,

The line 0204 now defines the ground link.



7. Calculate the lengths of crank and coupler by measuring 02B1 and OB and solve
simultaneously.

Coupler + crank = 02B1
Coupler — crank = 02B>

Or you can construct the crank length by swinging an arc centered at O, from B; to cut
line O,B; extended. Label that intersection B'. The line BzB is twice the crank length.
1 1

Bisect this line segment to measure crank length OA;,

2.1.5 Three Position Synthesis:

Fig. 2.3 (a) Rotation of input rocker O,A through the angle 7, cause rocker OB to rock
through the angle @1,

.02

Fig. 2.3 (b) Linkage inverted on the O4B position



Fig. 2.3 (c)

In figure (@) motion of input rocker OA through the angle fi1> causes a motion of the
output rocker O4B through the angle @1>.

To employ inversion as a technique of synthesis, let us hold O4B stationary and permit
the remaining links, including the frame, to occupy the same relative positions as in
figure (a). The result {figure (b)} is called inverting on the output rocker. Note that A1B1 is
positioned he same in fig (a) and (b). Therefore the inversion is made on the 04B:
position. Because O4Biis fixed, the frame will have to move in order to get the linkage to

the A.B> position. In fact, the frame must move backward through the angle @1,. The

second position is therefore 0" A" B' O4.
222

Fig. (c) illustrates a problem and the synthesized linkage in which it is desired to
determine the dimensions of a linkage in which the output lever is to occupy three
specified positions corresponding to three given position of input lever.

In fig (c) the starting angle of the input lever is 82; and f12, §23, and 13 are swing angle
respectively between the three design positions 1 and 2, 2 and 3, and 1 and 3.
Corresponding angles of swing @1, @23 and @13 are desired for the output lever. The
length of link 4 and the starting position O4 are to be determined.

Problem — 2: Given data: Synthesize a 4 bar mechanism by method of inversion.

Ri0, =20mm  fi2 = 40° d12= 30° 02 = 45°
Ro0, = 60 mm 23 = 35° 23 = 25°
Find: Rap =? 60mm

Rpo, =?725mm
04+ =? 60

Solution:



The solution to the problem is given in the figure and is based on inverting the linkage on
link 4. First we draw the input rocker O;A in the three specified positions and locate a
desired position for O4. Because we will invert on link 4 in the first design position we draw a
ray from Os to A; and rotate it backward through the angle ¢12 to locate 4,. Similarly we
draw another ray 0sAs3 and rotate it backward through the angle ¢13 to locate 4;. Because
we are inverting on the first design position, A1 and A  are coincident. Now we draw mid
normals to the line A1A’; . These intersect at B: and define the length of coupler link 3 and

the length of starting position of link 4.

2.1.6 Precision Position, Structural Error, Chebychev Spacing:

— In this chapter we have chosen to work with two or three or four positions of the linkage
called precision positions, and to find a linkage that exactly satisfies the desired function
at a few chosen positions.

— Structural error is defined as the theoretical difference between the function produced
by the synthesized linkage and the function originally prescribed.

o
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— A very good trial for the spacing of these precision positions is called Chebychev spacing.
For n precision position in the range xo < x < xn+1, the Chebychev spacing according
to Freudenstein and Sandor, is

1 1 (2j — Dn
Xj = Z—(xn+1 + x0) — 2—(xn+1 — Xo)cos B a—

Where j=1,2,..n And n = No. of precision positions

Problem — 3:y = sinx ,where xinradian,0 < x < _ p = 3 Precision. Solve with

4
Chebychev spacing.
Solution:
1 1 (2j =D
Xj= Z—(Xn+1 + XO) — 2—(Xn+1 - XO)COS n
16 16 2-1Dn
1n 1
3
- —(— —_—(—— = 0.3927
X2 2(4+0) 2(4 0)cos2><3 0.39
1n 1n 5n
- —(— — (== =0.732
X3 2(4+O) 2(4 0)C052X3 0.7328

Now, corresponding values of y are

y1 = sin 0.0526 = 0.0525
y2 = sin 0.3927 = 0.3287
y3 = sin 0.7328 = 0.6689




Before closing this section, we should note two or more problems that can arise to
confound the designer in using precision position for synthesis. These are called Branch
defect and order defect. Branch defect refers to a possible completed design that meets all
of the prescribed requirements of each of the precision position, but which cannot be
moved continuously between these positions without being taken apart and reassembled.
Order defect refers to a developed linkage that can reach all of the precision positions but
not in the desired order.

2.1.7 Overlay Method:

— Synthesis of a function generator, say using the overlay method, is the easiest and
quickest of all methods to use. It is not always possible to obtain a solution and
sometimes the accuracy is rather poor. Theoretically, however one can employ as many
precision positions as are desired in the process.

Problem — 4: y = sin x where x in radian 0 < x < ™ (Uniform spacing for output rocker
4

AF =90° and Ad = 60°)

Solution:

Position X f (degree) y ¢ (degree)
1 0 0 0 0
2 0.1418 16.24 0.1414 12
3 0.2867 32.86 0.2828 24
4 0.4380 50.22 0.4242 36
5 0.6014 68.90 0.5656 48

"= A o o

6 |z~ | AF=90°| 0707 = Ay | Ap = 60

A 0.707

(1) y=<1)_y=12>< = 0.1414
AP 60

(2) y=sinx > x=sin"ly
T
= sin~1 (0.1414 X___y — 1414
180

= 0.1418

Af  0.1418%x90 —
3) f= xﬂ — = 16.24

T

4



2.1.8 Freudenstein’s Equation:

YA

Fig. 2.5
— Replace the link of four bar linkage by position vector and write the vector equation.
ri+r2+r3+rs=0
In complex polar notation above equation can be written as
191 + rzeif2 4 1r3eif3 4 ryeif* = 0
Above equation is transformed into complex rectangular form by putting

e?=cos 0 +j-sinb.
~r1(cos@1+j-sinf1) +r2(cosfz +j-sinbz) + rz( cosf3 +j - sin 63)
+ ra(cosBfs +j-sinfs) =0

— Now, if the real and imaginary components of the above equation are separated, we
obtain the two algebraic equations
r1¢c0801 471200502 +1r3Cc05603 +14Cc0504=10
r1sinf1+712sinfz2 +r3sinfz +r4sinfs= 0
In above equation sin#1 = 0 and cosf1 = —1
o~ —T1+1200802+13C05603+714Cc0504=0
r2sinfz +r3sinf3 + raysinfs =0
Now,
~13C0S03=11—12Cc0502 —T14C0OS 04
< 13S8inf3= —712sinf2 — r4sin 04
— Squaring and Adding both the equations
r4(cos2 63 + sin2 63) = (r1 —rz2cos 02 — r4cos 04)? + (—rz2sin B2 — r4 sin 64)?

~13=(r1—a)? + (—rzsin 2 — r4 sin 64)2



=712 —=2ar1+ a? + r?2sin2 0, + 2rorssin B2 sin B4 + 12 sin? 4

1 2 4
=12 —2(r2c08 02 + 14 c0s 84)T1 + (r2 cos 02 + 14 cos 04)% + 2 sin? 6
1 2

+ 21214 sin 62 sin 04 + 1 sin? 04
=12 — 2117208 02 — 21174 c0S B4 + 12 c0S2 B2 + 21214 CcOS B2 cOS O4 + 12 OS2 O4

. .2 . . 4
1 + r2sin2 02 + 2rarasin 62 sin 04 + r2sin2 64
2 4
=12+ 12+ 12 — 2r11r2 c0S 02 — 21174 €0S B4 + 21214(CcOS B2 cos B4 + sin 02 sin 64)
1 2 4

W12 —71r2 — 12 —r2 4 21112 c0S 02 + 21174 COS 04 = 21214 coS(62 — O4)
3 1 2 4

Dividing both the sides by 2rara

2 — 72 — 72 — 92 -

.3 1 2 4 N 1 = -

. + 1050, +_COs 64 = cos(02 — 04)
21274 T4 2

K1cos 02 + K2cos 04+ K3= cos(62 — 04)

Where

1 1 r:—T1l—717—717
’ Ka=—, K3 =
T4 T2 21214

Ki=

— Freudenstein’s equation enables us to perform this same task by analytical means. Thus
suppose we wish the output lever of a four-bar linkage to occupy the position
@1, @2, and @3 corresponding to the angular positions 1, 2, and 3 of the input lever.
We simply replace 62 with fi, fawith @i, and write the equation three times, once for

each position.
K1 cos 1 + Kz cos o1 + K3 = cos(f1 — ¢1)
K1 cos f2 + K2 cos ¢2 + K3 = cos(f2 — ¢2)

Ki cos £3 + K2 cos ¢3 + K3 = cos(f3 — ¢3)

Problem —5: Synthesis a function generator y = ex0 < x < 1 using Chebychev spacing
and 3 precision position and obtain the solution

Solution:

Let Chebychev spacing equation
1 1 2j—1

X = (Xn+1 + x0) — 5 (xn+1 — x0) cos ( > )

x = 1_(1 +0) - 1_(1 —0)cos™ =0.067 >y = €067 = 1,069
12 2 6 1



x= 1 1 3n 0.5
2 _——_CoS__ _
2 2 6 =05->y2=e = 1.649
y= 11 RY/4 0.933
——_COoS__ —
3 573 e =0933-y=e = 2.54

Now we choose starting angles for input and output levers and also total swing angles for
each. These are arbitrary decisions and may or may not result in good linkage design, in the
sense that structural errors between the precision points may be large or the transmission

angles may be poor.

Here for the input lever we choose 30° starting angle ({) and 100° total swing angle. For the
output lever we choose starting angle 240° (@) and total swing 100° with this first and last

raw of the table can be completed.

Position X y =ex | fdegree | ¢ degree
- 0 1 30 240
1 0.067 1.069 36.7 244
2 0.5 1.649 80 277.76
3 0.933 2.54 123.3 329.73
- 1 2.718 130 340

Next to obtain the values of f and @ corresponding to precision points, we write

f=ax+b
30=a(0) b
130 =a(1l)+b

Solving above equationswe get a = 100 and b = 30
Now, f1 = axi +b = 100(0.067) + 30 = 36.7
f2=ax2+b =10000.5) + 30 =80
f3=ax3+b=10000.933) + 30 = 123.3
Same way
b=cy+d
240 =c(1) +d
340 = ¢(2.718) +d

Solving above equations we get ¢ = 58.20 and d = 181.79



Now, ¢1= cy1 +d = 58.20(1.069) + 181.79 = 244
d2=cy2 +d =58.20(1.649) + 181.79 = 277.76
$3= cys + d = 58.20(2.54) + 181.79 = 329.73
Now complete the table with above values
Let, K1cos 02 + K2cos 04 + K3 = cos(62 — 04)
Putting 62 — f(input) and 84 = ¢ (output)
Ki cos £1 + Kz cos d1 + K3 = cos(f1 — 1)
K1 cos §2 + Kz cos o2 + K3 = cos(f2 — ¢2)

K1 cos £3 + K2 cos 3 + K3 = cos(f3 — ¢3)

Where
T‘1 rl 7-2_1-2_7«2_1«2
Ki=__ K> = —, Kz = 3 1 2 4
T4 r2 271214

Putting the values in the equation,
~ K1c0s36.7 + K2 cos 244 + K3 = cos(36.7 — 244)
~ K1cos80 + K2 cos 277.76 + K3 = cos(80 — 277.76)
~ K1c0s123.3 + K2 c0s329.73 + K3 = cos(123.3 — 329.73)

When the trigonometric operations are carried out, we have

+ 0.8K1 — 0.44K> + K3= —0.89 (D)
= 0.17K1 + +0.13K2 + K3 = —0.95 e (2)
« —0.55K1 + 0.86K2 + K3= —0.90 )

By solving (1) & (2) —»0.63K1 — 0.59K, = 0.06

By Solving (2) & (3) —»0.72K1—0.73K2 = —0.05

We have | K1 = 1.43

K, =1.48
K;=—1.38
r 11 1

Ki= - ry = = 123 = 0.699 (Taker: = 1 unit)



1 r1

KZ:‘I‘_Z - ‘rz:K—Zz m

= 0.675

2 2 42 42
T Th
21T

= 0.675)

K3 = - r3 = 0.81 unit (Here K3 = —1.38,72 = 0.699,and r

Solution by Graphical Method

Problem — 6: Synthesis a function generator to solve the equation
1

y=" over therange 1 < x <2
X

using three precision positions.

Solution:
Choosing Chebychev spacing, using equation,
1 1 (2j-1)
X=_ (Xn+1 + xo) -_ (Xn+1 X% )cos| [T, =12, ,
2 2 \2n )
the values of x and corresponding values of y to be
x, =1.067, y, =0.937
X, =1.500, y, =0.667
x; =1.933, y, =0.517

We must now choose starting for the input and output levers and also total swing angles for
each. These are arbitrary decisions and may or may not result in a good linkage design in the
sense that the structural errors between the precision points may be large or the
transmission angles may be poor. Sometimes, in such a synthesis, it is even found that one



of the pivots must be disconnected in order to move from one precision point to another.
Generally, some trail —and — error work is necessary to discover the best starting angles and
swing angles.

Here, for the input lever, we choose a 30° starting angle and 90° total swing angle. For the
output lever, we choose a starting angle of 240° and again choose a range of 90° total travel.
With these choices made, the first and last rows of table can be completed.

Accuracy Positions

Position X deg: o y ¢ degree
- 1.000 30.00 1.000 240.00
1 1.067 36.03 0.937 251.34
2 1.500 75.00 0.667 300.00
3 1.933 83.97 0.517 326.94
- 2.000 120.00 0.500 330.00

Next, to obtain the values of f and ¢ corresponding to the precision points, we write

Y =ax+b, d=cy+d (1)

and use the data in the first and last rows of Table to evaluate the constants a, b, ¢, and d.
When this is done, we find equations (1) are

v =90x — 60, ¢ =—180y + 420 (2)

These equations can now be used to compute the data for the remaining rows in Table and
to determine the scales of the input and output levers of the synthesized linkage.
Now take the values of f and ¢ from the second, third, and fourth lines of Table and

substitute them for 8, and 84 in equation Ki cos0; +Ka cosba +Ks =cos( 0, — 04 ) .Repeat

this for the third and fourth lines. We then have the three equations
K1 0536.03 “+ K c0s251.34 + K3 =cos(36.03 ~ -251.34" )

K1 c0s75.00 + K, c0s300.00 K3 = cos(75.00 ° —300.00° )
K1c0s113.97 “+K; 0s326.94 “+Ks =cos(113.97 '~326.94 ") (3)

When the trigonometric operations are carried out, we have

0.8087K1 — 0.3200K, +K; =—0.8160
0.2588K1 +0.5000K; +Ks =—0.7071
—0.4062K; + 0.8381K; + K3 =-0.8389 (4)

Upon solving Equation (4) we obtain

K,=0.4032, K,=0.4032, K;=-1.0130



r
Using r1 = 1.00 units, we obtain, from equation K1 ="',

r-4
r =£= 1.00 =2.48 units
Ki 0.4032
r r2—r2—r2—r?
Similarly, from equations K, = ' and K;=3 1 2 4 \elearnthat
r, 2r,r,

r, = 2.48units and  r;=0.968units

The result is the crossed linkage shown in figure.

2.1.9 Bloch’s Method Of Synthesis:

by

Fig. 2.6

In figure replace the link of a four bar linkage by position vector and write the vector
equation

“r1+r2+r3+ra=0 v (@)

In complex polar notation above equation can be written as



11691 4+ 12e192 + 136193 + 14004 = 0. (b)
The first and second derivatives of this equation are

S 12w26092 4+ 13w36193 + 14W4619% = 0. (o
s r2(az + jw?)e?? + r3(as + jw?2)eif? + ra(as + jw2) et = 0 e (d)
2 3 4
do1 do _ L
(Here =0& = w because first link is fixed)
dt dt
Now we transform equations (b), (c), and (d) back into vector notation and we obtain the
equation
r1+ r2 + 3+ r4=20
w2r2 + w3r3 + W4Ty = 0

(az + ]wz)rz + (a3 + ]wz)T3 + (as + ]wz)m

Solving equation for r2 gives

1 1 1
[0 w3 wyg ]
0 (az+ ngz) (as + jwi)
= 1 1 1
[ w2 w3 Wy

(a2 +jw?) (as +jw?) (a1 +jw?)
Similar expressions can be obtained for rzand s

From above we find
ry = (,L)4(Qf3 =+ ](,()2) — 0)3(“4 + ]0)2)
r3 = w2(as + jw%) — w4laz + ]'(U%)

rs = w3(az + jw‘k) — w2(as + ]'(U%)
2 3
Y1=—1T2—713—T4

Problem — 7: Synthesize a four bar linkage to give the following values for the angular
velocity and acceleration (use Bloch method).

Given m; = 200 rad/sec az = 0 rad/sec?
= 85 rad/sec az = —1000rad/sec?
ms = 130rad/sec as = —16000rad/sec?
Solution:

r2 = wa(as + jw?) — ws(as + jw?)
3 4

= 130(—1000 + j 852) — 85(—16000 + j 1302)
= 1230000 —j 497000
= 1330000 2z — 22°



Magnitude = V12300002 + 4970002
= 1326615.61
= 1330000

—497000

1230000
0 =-22°
Soresult R = 1330000 £ — 22°
R = 1330000(cos —22° +jsin—22°)
= 1230000 —j 497000

Angle — tan 8 =

r3 = w2(as + jw?) — wa(az + jw?)
4 2

= 200(—16000 +j 130%) — 130(0 + j 2002)
= —3200000 —j1820000

= 3690000 2 — 150.4°
rs = w3(az + jw?) — w2(asz + jw?)
2 3

= 85(0 + j 2002) — 200(—1000 + j 852)
= 200000 + j 1955000
= 1965000 £ 84.15°

T1=—"T2—T3—T7T4
= —(1230000 —j 497000) — (—3200000 — j 1820000) — (200000 + j 1955000)
= 1770000 +j 362000

= 1810000 2 11.6°

Scale: 1 000 000 units = 25 mm ::

(a) ()
Figure O2A =33.25 mm; AB =92.25 mm; O4B =49.12 mm; O; O4 = 45.25 mm.

In Fig.(a) these four vectors are plotted to a scale of 10° units per inch. In order to make r1
horizontal an in the —x direction, the entire vector system must be rotated counterclockwise
180° - 11.6° = 168.4°. The resulting linkage can then be constructed by using r1 for link 1, r;
for link 2, and so on, as shown in Fig.(b). This mechanism has been dimensioned in mm and,
if analyzed, will show that the conditions of the example are fulfilled.
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3.1

3.2

Introduction

There are many methods for determining the velocity of any point on a link in a
mechanism whose direction of motion (i.e. path) and velocity of some other point on
the same link is known in magnitude and direction, yet the following two methods:

1 Instantaneous centre method

2 Relative velocity method

The instantaneous centre method is convenient and easy to apply in simple
mechanisms, whereas the relative velocity method may be used to any
configuration diagram.

Velocity Of Two Bodies Moving In Straight Lines

Here we shall discuss the application of vectors for the relative velocity of two
bodies moving along parallel lines and inclined lines, as shown in Fig. 2.1 (a) and 2.2
(a) respectively.

Consider two bodies A and B moving along parallel lines in the same direction with
absolute velocities vaand vssuch that va> vs, as shown in Fig. 2.1 (a). The relative

velocity of A with respect to B,
vap = vector dif ference of vaand vp =-» —-
Vg Up
From Fig. 2.1 (b), the relative velocity of A with respect to B (i.e. vag) may be written
in the vector form as follows :

Va
vV ] o
A A
. <‘*’B—,{
W,
5%
o - - a
b v -
- Ll
- VA
(a) (b)

Fig. 3.1 relative velocity of two bodies moving along parallel line

Similarly, the relative velocity of B with respect to A,
vag = vector dif ference of va and vs

Now consider the body B moving in an inclined direction as shown in Fig. 2.2 (a). The
relative velocity of A with respect to B may be obtained by the law of parallelogram
of velocities or triangle law of velocities. Take any fixed point o and draw vector oa
to represent vain magnitude and direction to some suitable scale. Similarly, draw
vector ob to represent vsin magnitude and direction to the same scale. Then vector ba
represents the relative velocity of A with respect to B as shown in Fig. 7.2 (b). In the
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similar way as discussed above, the relative velocity
of A with respect to B,

Va Va
A - 0 > '._a
N
& \
Vv
\ \ BA
Y e ". Vag
\ ve - \
1""IEI -"\ ™~ \
|
\ Al
A . 4
a' Va b
(a) (h)

Fig. 3.2 relative velocity of two bodies moving along inclined line

vag = vector dif ferece of vaand vs

Similarly, the relative velocity of B with respectto A
vpa = vector dif ferece of vs and va

From above, we conclude that the relative velocity of a point A with respect to B
(vap ) and the relative velocity of point B with respect to A (vsa) are equal in
magnitude but opposite in direction

VAB = — UBA

Motion Of A Link

Consider two points A and B on a rigid link A B, as shown in Fig. 2.3 (a). Let one of the
extremities (B) of the link move relative to A, in a clockwise direction. Since the
distance from A to B remains the same, therefore there can be no relative motion
between A and B, along the line AB. It is thus obvious, that the relative motion of B
with respect to A must be perpendicular to AB.

Hence velocity of any point on a link with respect to another point on the same link is

always perpendicular to the line joining these points on the configuration (or space)
diagram.

The relative velocity of B with respect to A (i.e. vsa) is represented by the vector ab
and is perpendicular to the line A B as shown in Fig. 2.3 (b).

We know that the velocity of the point B with respect to A
VBA= MXAB ..o ()

Similarly the velocity of the point C on AB with respect to A
VA= M X AC .o, (ii)
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Fig. 3.3 Motion of a Link

— Form equation (i) and (ii),
Vg MXAC AC...een,
= = _ (iii)
Upa mXAB AB
— Thus, we see from equation (iii), that the point ¢ on the vector ab divides it in the
same ratio as C divides the link AB.

3.4 \Velocity Of A Point On A Link By Relative Velocity Method

— Consider two points A and B on a link as shown in Fig. 2.4 (a). Let the absolute velocity
of the point A i.e. vais known in magnitude and direction and the absolute velocity of
the point B i.e. vs is known in direction only. Then the velocity of B may be
determined by drawing the velocity diagram as shown in Fig. 2.4 (b). The velocity
diagram is drawn as follows :

1 Take some convenient point o, known as the pole.

2 Through o, draw oa parallel and equal to va, to some suitable scale.

3 Through a, draw a line perpendicular to AB of Fig. 2.4 (a). This line will represent
the velocity of B with respect to A, i.e. vaa.
Through o, draw a line parallel to vB intersecting the line of vBA at b

5 Measurs ob, which gives the required velocity of point B ( vs), to the scale

C iy
. Vaa
‘B ’ﬁD oA

y '18{\

(=) Motion of points on a link. (B “elocity diagram.

Fig. 3.4




3.5 \Velocities In Slider Crank Mechanism

— Inthe previous article, we have discussed the relative velocity method for the velocity
of any point on a link, whose direction of motion and velocity of some other point on
the same link is known. The same method may also be applied for the velocities in a
slider crank mechanism.

— A slider crank mechanism is shown in Fig. 2.5 (a). The slider A is attached to the
connecting rod AB. Let the radius of crank OB be r and let it rotates in a clockwise
direction, about the point O with uniform angular velocity w rad/s. Therefore, the
velocity of B i.e. vsis known in magnitude and direction. The slider reciprocates along
the line of stroke AO.

b
vg =.r - \':."
e\
P
B V8 - \NEy
E .> W z AB‘:‘
. Y 0 > N
Lty — r. A S\
—t - - - R N
LTy VA O N ’\'\
A >
A
(g Slider crank mechanism, () Velocity diagram,
Fig. 3.5

— The velocity of the slider A (i.e. va) may be determined by relative velocity method as
discussed below :

1 From any point o, draw vector ob parallel to the direction of vs (or
perpendicular to OB) such that ob = ve=w.r, to some suitable scale, as shown
in Fig. 2.5 (b).

2 Since AB is a rigid link, therefore the velocity of A relative to B is
perpendicular to AB. Now draw vector ba perpendicular to A B to represent
the velocity of A with respect to B i.e. vas.

3  From point o, draw vector oa parallel to the path of motion of the slider A
(which is along AO only). The vectors ba and oa intersect at a. Now oa
represents the velocity of the slider l.e. va, to the scale.

— The angular velocity of the connecting rod A B (was) may be determined as follows:

VBA ab
m = = —
AB B B




3.6 Rubbing Velocity At A Pin Joint

— The links in @ mechanism are mostly connected by means of pin joints. The rubbing
velocity is defined as the algebraic sum between the angular velocities of the two links
which are connected by pin joints, multiplied by the radius of the pin.

— Consider two links OA and OB connected by a pin joint at O as shown in fig.

Fig. 3.6 Links connected by pin joints

— Let,
w1 = angular velocity of link OA
w2 = angular velocity of link OB

— According to the definition,
— Rubbing velocity at the pin joint O

= (m1 — mu1) X r if the links move in the same direction
= (m1 + ma1) X r if the links move in the same direction

3.7 Examples Based On Velocity

3.7.1 In afour bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm
long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about

D. BC and AD are of equal length. Find the angular velocity of link CD when angle
BAD = 60°.

— Given : Nsa= 120 r.p.m. or wea = 2 1t x 120/60 = 12.568 rad/s

— Since the length of crank A B = 40 mm = 0.04 m, therefore velocity of B with
respect to A or velocity of B, (because A is a fixed point),

— Since the length of crank A B = 40 mm = 0.04 m, therefore velocity of B with

respect to A or velocity of B, (because A is a fixed point),
VBa = Vg = Wpa X AB=12.568 x 0.04 =0.503 m/s

— Since the link AD is fixed, therefore points a and d are taken as one point in the
velocity diagram. Draw vector ab perpendicular to B A, to some suitable scale, to
represent the velocity of B with respect to A or simply velocity of B (i.e. veaor vs)
such that

Vector ab =vea=vs=0.503 m/s
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Fig. 3.7

— Now from point b, draw vector bc perpendicular to CB to represent the velocity of
C with respect to B (i.e. vcs) and from point d, draw vector dc perpendicular to CD
to represent the velocity of C with respect to D or simply velocity of C (i.e. veoor
vc). The vectors bc and dc intersect at c.

By measurement, we find that
Vep = vc = vector dc = 0.385 m/s

— Angular velocity of link CD,
vep 0.385
m = = = 4.8 rad/s

¢b CD 0.08

3.7.2 The crank and connecting rod of a theoretical steam engine are 0.5 m and 2 m

long respectively. The crank makes 180 r.p.m. in the clockwise direction. When it
has turned 45° from the inner dead centre position, determine:
1. Velocity of piston, 2. Angular velocity of connecting rod, 3. Velocity of point E on
the connecting rod 1.5 m from the gudgeon pin, 4. velocities of rubbing at the pins
of the crank shaft, crank and crosshead when the diameters of their pins are 50
mm, 60 mm and 30 mm respectively, 5. Position and linear velocity of any point G on
the connecting rod which has the least velocity relative to crank shaft.

— Given:
— Ngo =180 r.p.m. or wso = 2  x 180/60 = 18.852 rad/s

— Since the crank length OB = 0.5 m, therefore linear velocity of B with respect to O
or velocity of B (because O is afixed point),

VBo = VB = weo X OB = 18.852 x 0.5 =9.426 m/s

— First of all draw the space diagram and then draw the velocity diagram as shown in
fig.
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Fig. 3.8

— By measurement, we find that velocity of piston P,
vp = vector op = 8.15m/s

— From the velocity diagram, we find that the velocity of P with respect to B
vpg = vector bp = 6.8 m/s

— Since the length of connecting rod PB is 2 m, therefore angular velocity of the
connecting rod,

6.8
m = VB _ =3.4rad/s

P PR 2
vE = vector oe = 8.5 m/s
— We know that velocity of rubbing at the pin of crank-shaft
= "xm
2
— Velocity of rubbing at the pin of crank
_ap
Ex M vm,,) = 0.6675m/s

— Velocity of rubbing at the pin cglf crank
= ‘Xm =0.051m/s

2 PB

so = 0.47 m/s

— By measurement we find that
vector bg =5m/s

— By measurement we find linear velocity of point G
v = vector og = 8 m/s

3.7.3 In Fig., the angular velocity of the crank OA is 600 r.p.m. Determine the linear
velocity of the slider D and the angular velocity of the link BD, when the crank is
inclined at an angle of 75° to the vertical. The dimensions of various links are: OA =
28 mm; AB = 44 mm; BC 49 mm; and BD = 46 mm. The centre distance between the
canters of rotation O and C is 65 mm. The path of travel of the slider is 11 mm
below the fixed point C. The slider moves along a horizontal path and OC is vertical.




Fig. 3.9
Given:
Nao = 180 r.p.m. or weo = 2 1t x 180/60 = 18.852 rad/s

OA =28 mm
voa=va= ma X AO =1.76 m/s

Since the points O and C are fixed, therefore these points are marked as one
point, in the velocity diagram. Now from point o, draw vector oa perpendicular to
O A, to some suitable scale, to represent the velocity of A with respect to O or
simply velocity of A such that

vector oa = voa = va = 1.76 m/s

From point a, draw vector ab perpendicular to A B to represent the velocity of B
with respect A (i.e. vea) and from point ¢, draw vector cb perpendicular to CB to
represent the velocity of B with respect to C or simply velocity of B (i.e. vsc or vs).
The vectors ab and cb intersect at b.

From point b, draw vector bd perpendicular to BD to represent the velocity of D
with respect to B (i.e. vos) and from point o, draw vector od parallel to the path of
motion of the slider D which is horizontal, to represent the velocity of D (i.e. vb).

The vectors bd and od intersect at d.
pryyy
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(a) Space diagram. (B) Velocity diagram.

Fig.3.10




— By measurement, we find that velocity of slider D,
vp = vector od = 1.6 m/s
— By measurement from velocity diagram, we find that velocity of D with respect to
B,
vps = vector bd = 1.7 m/s
— Therefore angular velocity of link BD
_Vos_ L7 —36.96rad/s

m
BD B 0.046

3.7.4 The mechanism, as shown in Fig. 7.11, has the dimensions of various links as
follows :
AB = DE = 150 mm; BC = CD =450 mm; EF = 375 mm. The crank AB makes an angle of
45° with the horizontal and rotates about A in the clockwise direction at a uniform
speed of 120 r.p.m. The lever DC oscillates about the fixed point D, which is
connected to AB by the coupler BC.
The block F moves in the horizontal guides, being driven by the link EF. Determine: 1.
velocity of the block F, 2. angular velocity of DC, and 3. rubbing speed at the pin C
which is 50 mm in diameter.

— Given:
— Npa=120r.p.m. or wea= 2 1t x 120/60 = 4 mt rad/s

— Since the crank length AB =150 mm =0.15 m, therefore velocity of B with respect
to A or simply velocity of B (because A is a fixed point),

vea=Ve=wsaX AB=4 1 x0.15=1.885 m/s

+— 375 mm ———»
| —— _q_D_ - _
A A
100 mm
I A va
375 mm ! ___--"'__--- TP
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| |1

B \

PN E
A --.-"-"'-.h C

Fig.3.11

— Since the points A and D are fixed, therefore these points are marked as one
point as shown in Fig. (b). Now from point a, draw vector ab perpendicular to A B,




to some suitable scale, to represent the velocity of B with respect to A or simply
velocity of B, such that
Vector ab = vea=vs=1.885 m/s

The point C moves relative to B and D, therefore draw vector bc perpendicular
to BC to represent the velocity of C with respect to B (i.e. vCB), and from point
d, draw vector dc perpendicular to DC to represent the velocity of C with
respect to D or simply velocity of C (i.e. vCD or vC). The vectors bc and dc
intersect at c.
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(8 Space diagram. (B WVelocity diagrarm.
Fig. 3.12

Since the point E lies on DC, therefore divide vector dc in e in the same ratio as
E divides CD in Fig. (a). In other words

ce/cd = CE/CD
From point e, draw vector ef perpendicular to EF to represent the velocity of F
with respect to E (i.e. vre) and from point d draw vector df parallel to the path
of motion of F, which is horizontal, to represent the velocity of F i.e. vr. The
vectors ef and df intersect at f.

vr = vector df =0.7 m/s

By measurement from velocity diagram, we find that velocity of C with respect to
D,
vep = vector dc =2.25 m/s
_ v _grad
e = pe s
From velocity diagram, we find that velocity of C with respect to B,
vce = vector bc =2.25 m/s

Angular velocity of BC, v 2.25
m =_¢P= = 5rad/s

¢b BC 0.45
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Velocity Of A Point On A Link By Instantaneous Centre
Method

The instantaneous centre method of analyzing the motion in a mechanism is based
upon the concept that any displacement of a body (or a rigid link) having motion in
one plane, can be considered as a pure rotational motion of a rigid link as a whole
about some centre, known as instantaneous centre or virtual centre of rotation.

VB

Vg cos P

Fig. 3.13 velocity of a point on a link

The velocities of points A and B, whose directions are given a link.by angles & and
B as shown in Fig. If vA is known in magnitude and direction and vB in direction
only, then the magnitude of vB may be determined by the instantaneous centre
method as discussed below :

Draw Al and BI perpendiculars to the directions vA and vB respectively. Let these
lines intersect at I, which is known as instantaneous centre or virtual centre of the
link. The complete rigid link is to rotate or turn about the centre I.

Since A and B are the points on a rigid link, therefore there cannot be any relative
motion between them along line AB.

Now resolving the velocities along AB,

va X cosa = vp X cosQ
va_ cosQ  sin(90 — Q) et

— : (1
ve cosa sin(90 — a)
Applying Lami’s theorem to triangle ABI,
Al _ BI
sin(90 —Q)  sin(90 — a)
2V S T C IO 0 ) -
—_—= — (ii)

BI  sin(90 — a)

Hence,
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3.10

3.11

Vg
VA = 7 = Mo, (iii)
Al BI
If Cis any other point on link, then
Vy Vg V¢
Al BI CI
Properties Of Instantaneous Method

The following properties of instantaneous centre are important :

1 A rigid link rotates instantaneously relative to another link at the
instantaneous centre for the configuration of the mechanism considered.

2 The two rigid links have no linear velocity relative to each other at the
instantaneous centre. At this point (i.e. instantaneous centre), the two rigid
links have the same linear velocity relative to the third rigid link. In other
words, the velocity of the instantaneous centre relative to any third rigid link
will be same whether the instantaneous centre is regarded as a point on the
first rigid link or on the second rigid link

Number Of Instantaneous Centre In A Mechanism:

The number of instantaneous centres in a constrained kinematic chain is equal to
the number of possible combinations of two links. The number of pairs of links or
the number 3 of instantaneous centres is the number of combinations of n links

taken two at a time. Mathematically, number of instantaneous centres
nn—1) _
N = T,where n = Number of Link
Location of Instantaneous centres:

The following rules may be used in locating the instantaneous centres in a
mechanism :

1 When the two links are connected by a pin joint (or pivot joint), the
instantaneous centre lies on the centre of the pin as shown in Fig. (a). such an
instantaneous centre is of permanent nature, but if one of the links is fixed,
the instantaneous centre will be of fixed type.

2 When the two links have a pure rolling contact (i.e. link 2 rolls without
slipping upon the fixed link 1 which may be straight or curved), the
instantaneous centre lies on their point of contact, as shown in Fig.(b). The
velocity of any point A on the link 2 relative to fixed link 1 will be
perpendicular to 112 A and is proportional to 112 A.

3  When the two links have a sliding contact, the instantaneous centre lies on
the common normal at the point of contact. We shall consider the following
three cases :

a. When the link 2 (slider) moves on fixed link 1 having straight surface as
shown in Fig.(c), the instantaneous centre lies at infinity and each point on
the slider have the same velocity.




b. When the link 2 (slider) moves on fixed link 1 having curved surface as shown
in Fig.(d),the instantaneous centre lies on the centre of curvature of the
curvilinear path in the configuration at that instant.

c. When the link 2 (slider) moves on fixed link 1 having constant radius of
curvature as shown in Fig. 6.6 (e), the instantaneous centre lies at the centre
of curvature i.e. the centre of the circle, for all configuration of the links.

Link 2 Link 2
'/ (disc) lyp at liz Va V/ (slider)
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| / GRS
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[
|

i /| (slider)

o Link 2
\;Qt- / “ (slvd\t/er) ! v Bl | f \ \

\ B <{——p i L | .‘
v v 3 e | = 12 J
o 777ITTITT 77/7977/77777/7977 / Prrrr7?? Y 7
liz Link 1 o Link 1 Link 1 Link 1 Link1 N~

(fixed) (fixed) (fixed) (fixed)
(a) (b) (0) (d) (e)

Fig. 3.14 Location of Instantaneous centres

3.12 Kennedy’s Theorem

— The Aronhold Kennedy’s theorem states that “if three bodies move relatively to each
other, they have three instantaneous centres and lie on a straight line.”

— Consider three kinematic links A, B and C having relative plane motion. The number
of instantaneous centres (N) is given by
nn-1) _3@B-1)
N = ( ) = =3
2 2
— The two instantaneous centres at the pin joints of B with A, and C with A (i.e. laband

lac) are the permanent instantaneous centre According to Aronhold Kennedy’s
theorem, the third instantaneous centre Ioc must lie on the line joining laband lac. In
order to prove this let us consider that the instantaneous centre Inclies outside the
line joining laband lacas shown in Fig. The point Iyc belongs to both the links B and C.
Let us consider the point Isc on the link B. Its velocity vec must be perpendicular to
the line joining laband Ibc. Now consider the point Ibc on the link C. Its velocity vac
must be perpendicular to the line joining lac and loc.
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Fig. 3.15 Aronhold Kennedy’s theorem

ac

— We have already discussed that the velocity of the instantaneous centre is same
whether it is regarded as a point on the first link or as a point on the second link.
Therefore, the velocity of the point Ibc cannot be perpendicular to both lines lab Ibc
and lac Ibc unless the point Ibc lies on the line joining the points lab and lac. Thus the
three instantaneous centres (lab, lac and Ibc) must lie on the same straight line. The
exact location of Ibc on line lab lac depends upon the directions and magnitudes of
the angular velocities of B and C relative to A.

3.13 Acceleration Diagram for a Link

— Consider two points A and B on a rigid link as shown in Fig. (a). Let the point B moves

with respect to A, with an angular velocity of w rad/s and let & rad/s2 be the angular
acceleration of the link AB.
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Fig. 3.16 Acceleration of a link

— We have already discussed that acceleration of a particle whose velocity changes
both in magnitude and direction at any instant has the following two components.

1 The centripetal or radial component, which is perpendicular to the velocity of the
particle at the given instant.

2 The tangential component, which is parallel to the velocity of the particle at the
given instant.
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Thus for a link A B, the velocity of point B with respect to A (i.e. vBA) is perpendicular
to the link A B as shown in Fig.(a). Since the point B moves with respect to A with an

angular velocity of w rad/s, therefore centripetal or radial component of the
acceleration of B with respect to A

2
ay, = m? X Lengthof link AB=m? XAB = vBA/AB

This radial component of acceleration acts perpendicular to the velocity vBA, In
other words, it acts parallel to the link AB.
We know that tangential component of the acceleration of B with respectto A,
at, = axXLengthof linkAB=ax AB
This tangential component of acceleration acts parallel to the velocity vBA. In other
words, it acts perpendicular to the link AB.

In order to draw the acceleration diagram for a link A B, as shown in Fig. 8.1 (b), from
any point b', draw vector b'x parallel to BA to represent the radial component of
acceleration of B with respect to A.

Acceleration of a Point on a Link

Consider two points A and B on the rigid link, as shown in Fig. (a). Let the
acceleration of the point A i.e. aA is known in magnitude and direction and the
direction of path of B is given. The acceleration of the point B is determined in
magnitude and direction by drawing the acceleration diagram as discussed below.
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Fig. 3.17 acceleration of a point on a link

From any point o', draw vector o'a' parallel to the direction of absolute acceleration
at point Ai.e. aa, to some suitable scale, as shown in Fig. 8.2 (b).

We know that the acceleration of B with respect to A i.e. aBA has the following two
components:

1 Radial component of the acceleration of B with respectto Ai.e. a’;,
2 Tangential component of the acceleration B with respecttoAi.e. ai;,




— Draw vector a’x parallel to the link AB such that,

vector ax= a- =v? [/AB
BA BA

— From point x, draw vector xb’ perpendicular to AB or vector a’x and through o’ draw
a line parallel to the path of B to represent the absolute acceleration of B i.e. as

— By joining the points a' and b' we may determine the total acceleration of B with
respect to A i.e. asa. The vector a' b' is known as acceleration image of the link AB.

— For any other point C on the link, draw triangle a' b' ¢' similar to triangle ABC. Now
vector b' ¢' represents the acceleration of C with respect to B i.e. a cg, and vector a' c'

represents the acceleration of C with respect to A i.e. aca. As discussed above, acs

and aca will each have two components as follows :
a. acshas two components; a” and at as shown by triangle b’zc’ in fig.b
CB CB

b. aca has two components; a” and at as shown by triangle a’yc’
CA cA

— The angular acceleration of the link AB is obtained by dividing the tangential
component of acceleration of B with respect to A to the length of the link.
aAB = a%A/AB

3.15 Acceleration in Slider Crank Mechanism

— A slider crank mechanism is shown in Fig. 8.3 (a). Let the crank OB makes an angle 0
with the inner dead centre (1.D.C) and rotates in a clockwise direction about the fixed

point O with uniform angular velocity wso rad/s

— Velocity of B with respect to O or velocity of B (because O is a fixed point),
vso = vB = mpo X OB acting tangentially at B

— We know that centripetal or radial acceleration of B with respect to O or
acceleration of B (Because O is a fixed point)
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(a) Slider crank mechanism. (B) Acceleration diagram.

Fig. 3.18 acceleration in the slider crank mechanism

— The acceleration diagram, as shown in Fig. 8.3 (b), may now be drawn as discussed
below:




Draw vector o' b' parallel to BO and set off equal in magnitude of a=a, to some
BO suitable scale.

From point b', draw vector b'x parallel to BA. The vector b'x represents the radial
component of the acceleration of A with respect to B whose magnitude is given
by :

ar =12 /BA
AB AB

From point x, draw vector xa’ perpendicular to b’x. The vector xa’ represents the
tangential components of the acceleration of A with respect to B.
Since the point A reciprocates along AO, therefore the acceleration must be
parallel to velocity. Therefore from o', draw o' a' parallel to A O, intersecting the
vector xa' ata'.
The vector b' a', which is the sum of the vectors b' x and x a', represents the total
acceleration of A with respect to B i.e. aas. The vector b'a' represents the
acceleration of the connecting rod AB.
The acceleration of any other point on A B such as E may be obtained by dividing
the vector b' a' at e' in the same ratio as E divides A B in Fig. 8.3 (a). In other
words
a'e’/a'b' = AE/AB

The angular acceleration of the connecting rod A B may be obtained by dividing
the tangential component of the acceleration of A with respect to B to the length
of AB. In other words, angular acceleration of AB,

ass= aip/AB

3.16 Examples Based on Acceleration

3.16.1 The crank of the slider crank mechanism rotates clockwise at a constant speed
of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long.
Determine :

1.
2.

Linear velocity and acceleration of the midpoint of the connecting rod, and
Angular velocity and angular acceleration of the connecting rod, at a crank
angle of 45° from inner dead centre position

Given:

Ngo = 300 r.p.m. or weo = 2 1t x 300/60 = 31.42 rad/s; OB =150 mm=0.15m; B A
=600 mm=0.6m

We know that linear velocity of B with respect to O or velocity of B,
vBo= VB = wpo X OB =31.42 X 0.15=4.713 m/s
Draw vector ob perpendicular to BO, to some suitable scale, to represent the
velocity of B with respect to O or simply velocity of B i.e. vso or vB, such that
vector ob =veo=vs=4.713 m/s
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(8) Space diagram. (b) Velocity diagram. (¢) Acceleration diagram,
Fig. 3.19

From point b, draw vector ba perpendicular to BA to represent the velocity of A
with respect to B i.e. vas, and from point o draw vector oa parallel to the motion
of A (which is along AO) to represent the velocity of A i.e. va. The vectors ba and
oa intersect at a.
By measurement we find the velocity A with respect to B,
vap = vector ba=3.4m/s
va = vector oa=4m/s
In order to find the velocity of the midpoint D of the connecting rod A B, divide
the vector ba at d in the same ratio as D divides A B, in the space diagram. In
other words,
bd/ba = BD/BA
By measurement, we find that
vp = vector od = 4.1 m/s
We know that the radial component of the acceleration of B with respect to O or
the acceleration of B,
@ =ap = V5o _ (4713) = 1481 m/s?
BO OB
0.15
And the radial component of the acceleration of A with respect to B,

o o= Vis_ (A =193 m/s?

4 BA

0.6
vector o'b' = ago = a = 148.1 m/s?
By measurement, we find that
ap = vector o'd =117 m/s?
We know that angular velocity of the connecting rod AB,
Vap = = 2
W, = YRR 5.67 rad/s
From the acceleration diagram, we find that
a4g = 103 m/s?

We know that angular acceleration of the connecting rod AB,




t

= %% = % = 171.67 rad/s?

3.16.2 An engine mechanism is shown in Fig. 8.5. The crank CB = 100 mm and the
connecting rod BA = 300 mm with centre of gravity G, 100 mm from B. In the
position shown, the crankshaft has a speed of 75 rad/s and an angular acceleration
of 1200 rad/s?. Find:

1. Velocity of G and angular velocity of AB, and

aAB

2. Acceleration of G and angular acceleration of AB.

_#B
120° /100 mm
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Fig. 3.20
— Given:
— wsc=75rad/s ; asc = 1200 rad/s?, CB =100 mm=0.1m; BA=300mm=0.3m
— We know that velocity of B with respect to C or velocity of B
Vec=Ve=wac X CB=75x0.1=7.5m/s

— Since the angular acceleration of the crankshaft, &esc = 1200 rad/s?, therefore

tangential component of the acceleration of B with respect to C,
at = ag X CB = 1200 x 0.1 = 120 m/s?
BC . m

vector cb = vpc = v = 7.5 —
S

— By measurement, we find that velocity of G,
ve = vector cg = 6.8 m/s

— From velocity diagram, we find that the velocity of A with respect to B,
vap = vector ba=4m/s

B
G — AP v
e Sk o~ A =
= 120° / 100 mm VB »\7:?\ " “.‘
. i_ = = - . : “\*\f\G\ AVas
A C e\
B R X g
s
(8 Space diagram. (B) Velocity diagram.
Fig. 3.21
— We know that angular velocity of AB,
v 4
Wpp = 4= __-133 rad/s

BA 03
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(&) Acceleration diagram.
Fig. 3.22

— We know that radial component of the acceleration of B with respect to C
r_ Vs (75)?

a, = —_—
2 CB 0.1
— And radial component of the acceleration of A with respect to B,

o vi _ (4) =533 m/s?

= 562.5 m/s?

aA
N
0.3
vector c’b” = a%, =562.5m/s?

vector b'b' = ab, = 120 m/s?
vector b'x = ajz =53.3m/s?
— By measurement we find that acceleration of G,
ac = vector xa' = 414 m/s?
— From acceleration diagram, we find that tangential component of the
acceleration of A with respect to B,
alz = vector xa' = 546 m/s?
— Angular acceleration of AB

ajp 546

= - —_—— 2
B = p, 03 1820 rad/s

3.16.3 In the mechanism shown in Fig. 8.7, the slider C is moving to the right with a
velocity of 1 m/s and an acceleration of 2.5 m/s2.The dimensions of various links are
AB = 3 m inclined at 45° with the vertical and BC = 1.5 m inclined at 45° with the
horizontal. Determine: 1. the magnitude of vertical and horizontal component of the
acceleration of the point B, and 2. the angular acceleration of the links AB and BC.
— Given:

— vc=1m/s;ac=2.5m/s2; AB=3m;BC=15m

— Here,
vector dc = vep = ve = 1m/s

— By measurement, we find that velocity of B with respect to A
vBa = vector ab= 0.72 m/s

— Velocity of B with respectto C




vpc = vector cb = 0.72 m/s
We know that radial component of acceleration of B with respect to C,
. vie _ (0.72)2
“% = B 15
And radial component of acceleration of B with respect to A,
r Vsa_ (0.72)2
“ T AaB T3
vectro d'c' = Qed = ac = 2.5 m/s?

vectorcx = ar =0.346 _
BC 2

vector a’y = aj, =0.173m/s?

= 0.346 m/s?

=0.173 m/s2

By measurement,
vector b'b" =1.13 m/s?
By measurement from acceleration diagram, we find that tangential component
of acceleration of the point B with respect to A
ah, = vector yb'= 1.41m/s?
And tangential component of acceleration of the point B with respect to C,
ab. = vector xb' = 1.94 m/s?

we know that angular velocity of AB,
t

@ = 0.47 rad/s?
AB

aAB =

And aglular acceleration of BC,

t
Agc 1.94
apc= .- = —— rad/s?
B 15 T/
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Special Mechanisms




4.1 Straight Line Mechanisms

— It permits only relative motion of an oscillatory nature along a straight line. The
mechanisms used for this purpose are called straight line mechanisms.

1 In which only turning pairs are used
2 In which one sliding pairis used.
— These two types of mechanisms may produce exact straight line motion or
approximate straight line motion.
— Need of Straight Line:
1 Sewing Machine converts rotary motion to up/down motion.
2 Want to constrain pistons to move only in a straight line.
3 How do you create the first straight edge in the world? (Compass is easy)
4 Windshield wipers, some flexible lamps made of solid pieces connected by
flexible joints.

4.2 Exact Straight Line Motion Mechanisms Made Up Of Turning

Pairs
— The principle adopted for a mathematically correct or exact straight line motion is
described in Fig.4.1
— Let O be a point on the circumference of a circle of diameter OP. Let OA be any
chord and B is a point on OA produced, such that
OA X OB = constant
— The triangles OAP and OBQ are similar.

Fig. 4.1 Exact straight line motion mechanism

OA_ 0Q
OP OB



OP X 0Q = 0A X OB
0OA X OB
0Q = 0P
— But OPis constant as it is the diameter of a circle; therefore, if OA x OB is constant,
then 0Q will be constant.
— Hence
OA X OB = constant

— So point B moves along the straightline.

4.3 Peaucellier Mechanism (Exact Straight Line)

— It consists of a fixed link 001 and the other straight links O1A, OC, OD, AD, DB, BC
and CA are connected by turning pairs at their intersections, as shown in Fig. 4.2

The pin at A is constrained to move along the circumference of a circle with the fixed
diameter OP, by means of the link O1A. In Fig. 4.2

— AC=CB=BD=DA

- 0C=0D

— 001=01A

Fig. 4.2 Peaucellier Mechanism

— From right angled triangles ORC and BRC, we have
0C? = OR? + R(C? (1
BC2 = RB%2 + R(C? (ii)

—  From (i) and (ii)

0C2— BC? = OR? — RB?
= (OR — RB)(OR + RB)



= 0B

X 0A

— Since OCand BC are of constant length, therefore the product OB x OA remains

constant.

4.4 Hart’s Mechanism

— This mechanism requires only six links as compared with the eight links required by

the Peaucellier mechanism.

— It consists of a fixed link 001 and other straight links O1A, FC, CD, DE and EF are
connected by turning pairs at their points of intersection, as shown in Fig. 4.3.

— The links FC and DE are equal in length and the lengths of the links CD and EF are
also equal. The points O, A and B divide the links FC, CD and EF in the same ratio. A
little consideration will show that BOCE is a trapezium and OA and OB are

respectively parallel to FD and CE.
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Fig. 4.3 Hart’s Mechanism

— Here, FC=DE&CD = EF

— The point O, A and B divide the links FC, CD and EF in the same ratio.

— From similar triangles CFE and OFB,

CE X OF
E: OB orcB= __ "~ .. ()
FC OF FC
— From similar triangle FCD and OCA
FD 04 FD x @ -
— = — or OA= —— ... (ii)
FC oc FC
— From above equations,
FD x @
0A x OB o CE X OF
FC FC
0C X OF
FD XCE x
F(C?

— Since the lengths of OC, OF and FC are fixed, therefore
OA X OB = FD X CE X cons. ... (iii)
— From point E, draw EM parallel to CF and EN perpendicular to FD.



FD XCE=FD xFM (CE=FM)
= (FN + ND)(FN — MN)
= FNZ — ND2 (MN = ND)

= (FE? — NE?)— (ED? — NE?) (From right
angle triangles FEN and EDN)
= FE? — ED? = constant (iv)
— From equation (iii) and (iv),
OA X OB = constant

4.5 Exact Straight Line Motion consisting of one sliding pair-Scott

Russell’s Mechanism

— Ais the middle point of PQ and OA = AP = AQ. The instantaneous center for the link
PAQ lies at | in OA produced and is such that IP is perpendicular to OP.
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Fig. 4.4 Scott Russell’s Mechanism
— Join 1Q. Then Q moves along the perpendicular to IQ. Since OPIQ is a rectangle and
IQ is perpendicular to 0Q, therefore Q moves along the vertical line 0Q for all
positions of QP. Hence Q traces the straight line OQ'.
— If OA makes one complete revolution, then P will oscillate along the line OP through
a distance 2 OA on each side of O and Q will oscillate along OQ’ through the same
distance 2 OA above and below O. Thus, the locus of Q is a copy of the locus of P.



4.6 Approximate straight line motion mechanisms

46.1 Watt's Mechanism
— It has four links as shown in fig. OB, O1A, AB and OO1.
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Fig. 4.5 watt’s mechanism
— OB and O1A oscillates about centers O and O1 respectively. P is a point on AB
such that,
014 PB

OB PA
— As OB oscillates the point P will describe an approximate straight line.

46.2 Modified Scott-Russel Mechanism

— This is similar to Scott-Russel mechanism but in this case AP is not equal to AQ

and the points P and Q are constrained to move in the horizontal and vertical
directions.
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Fig. 4.6 Modlified Scott-Russel Mechanisms



A little consideration will show that it forms an elliptical trammel, so that any
point A on PQ traces an ellipse with semi-major axis AQ and semi minor axis AP.

If the point A moves in a circle, then for point Q to move along an approximate
straight line, the length OA must be equal (AP)2 / AQ. This is limited to only small

displacement of P.

463 Grasshopper Mechanism

In this mechanism, the centers O and O1 are fixed. The link OA oscillates about O
through an angle AOA1 which causes the pin P to move along a circular arc with

01 as center and O1P as radius.
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Fig. 4.7 Grasshopper Mechanism

For small angular displacements of OP on each side of the horizontal, the point Q

on the extension of the link PA traces out an approximately a straight path QQ'. if

the lengths are such that

AP?
0A =

AQ

464 Tchebicheff’s Mechanism

It is a four bar mechanism in which the crossed links OA and O1B are of equal

length, as shown in Fig. 4.8.

The point P, which is the mid-point of AB, traces out an approximately straight

line parallel to O01.



— The proportions of the links are, usually, such that point P is exactly above O or
O1 in the extreme positions of the mechanism i.e. when BA lies along OA or
when BA lies along BO1.
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Fig. 4.8 Tchebicheff's mechanism
— It may be noted that the point P will lie on a straight line parallel to 00;, in the

two extreme positions and in the mid position, if the lengths of the links are in
proportions
AB:001:0A=1:2:25.

465 Roberts Mechanism

— ltis also a four bar chain mechanism, which, in its mean position, has the form of
a trapezium. The links OA and O1 B are of equal length and 001 is fixed. A bar PQ
is rigidly attached to the link AB at its middle point P.
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Fig. 4.9 Robert’s Mechanism



— A little consideration will show that if the mechanism is displaced as shown by
the dotted lines in Fig. the point Q will trace out an approximately straight line.

4.7 Steering gear mechanism

The steering gear mechanism is used for changing the direction of two or more of
the wheel axles with reference to the chassis, so as to move the automobile in any
desired path.

Usually the two back wheels have a common axis, which is fixed in direction with
reference to the chassis and the steering is done by means of the front wheels.

In automobiles, the front wheels are placed over the front axles, which are pivoted
at the points A and B, as shown in Fig. 4.10.
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Fig. 4.10 steering gear mechanism

These points are fixed to the chassis. The back wheels are placed over the back axle,
at the two ends of the differential tube. When the vehicle takes a turn, the front
wheels along with the respective axles turn about the respective pivoted points. The
back wheels remain straight and do not turn. Therefore, the steering is done by
means of front wheels only.

In order to avoid skidding (i.e. slipping of the wheels sideways), the two front wheels
must turn about the same instantaneous centre | which lies on the axis of the back
wheels. If the instantaneous centre of the two front wheels do not coincide with the
instantaneous Centre of the back wheels, the skidding on the front or back wheels
will definitely take place, which will cause more wear and tear of the tyres



— Thus, the condition for correct steering is that all the four wheels must turn about
the same instantaneous centre. The axis of the inner wheel makes a larger turning
angle O than the angle ¢ subtended by the axis of outer wheel.

— Let, a=wheeltrack

b = wheel base
¢ = Distance between the pivots A and B of the front axle.
— Now from triangle IBP,

BP
cotd = ___
IP
— And from triangle IAP, AP
c
cotp= ___ = M: _+ cotd
IP IP b

c
cot® — cot@ =

b
— This is the fundamental equation for correct steering.

4.8 Devis Steering Mechanism

— The Davis steering gear is shown in Fig. 9.16. It is an exact steering gear mechanism.
The slotted links AM and BH are attached to the front wheel axle, which turn on
pivots A and B respectively.

— The rod CD is constrained to move in the direction of its length, by the sliding
members at P and Q. These constraints are connected to the slotted link AM and BH
by a sliding and a turning pair at each end. The steering is affected by moving CD to
the right or left of its normal position. C ‘D’ shows the position of CD for turning to
the left.

o | | Back axle

Fig. 4.11 Devis steering gear mechanism



—  Let,
a = Vertical distance between AB and CD,
b = Wheel base,
d = Horizontal distance between AC and BD,
c = Distance between the pivots A and B of the front axle.
x = Distance moved by ACto AC' =CC ' =DD’, and
a = Angle of inclination of the links AC and BD, to the vertical.

— From triangle AA’C’

. +d A'CT A Ko 0
= —= —— i
— From triangle AA’C p
tana — A C = _ (11)
AA  a
— From triangle BB’D’
B'D' A =X
tan(a — 0) = = (iii)
BB a
—  We know that,
tana + tan @
tan(a + @) =

l—tana X tan®
d+x_ d/q+ tan® _ d+(a X tan®)

a 1- d/a X tan@ a—(d X tan Q)
dxxX(a—d xtan®) =a X (d+a X tan®)
ad—d?xXtan@+a-x—dXxXtan@=a-d+ a2 X tan®

tanP X (a2 +d?2+d-x)=a-x
a*x
tan@ = i
e ey L e N (iv)

— Similarly from tan(a — 6) = 4=%  \ye get
a

a-x
tanf =
(@2 + d? — d " X) e @)
— We know that for correct steering,
cotd — cotd = _
b
(a2+ d*+d-x) (a>+ d*’—-d-x) ¢
a-'x B a-x b
2d ¢
o b
c
2tana = —
b
tana = C_

2b



4.9 Ackerman steering Gear

— The Ackerman steering gear mechanism is much simpler than Davis gear. The
difference between the Ackerman and Davis steering gears are :

1 The whole mechanism of the Ackerman steering gear is on back of the front
wheels;
whereas in Davis steering gear, it is in front of the wheels.

2 The Ackerman steering gear consists of turning pairs, whereas Davis
steering gear consists of sliding members.
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Fig. 4.12 Ackerman steering mechanism

— In Ackerman steering gear, the mechanism ABCD is a four bar crank chain, as shown
in Fig. 4.12. The shorter links BC and A D are of equal length and are connected by
hinge joints with front wheel axles. The longer links A B and CD are of unequal
length.

— The following are the only three positions for correct steering.

1 When the vehicle moves along a straight path, the longer links A B and CD are
parallel and the shorter links BC and AD are equally inclined to the
longitudinal axis of the vehicle, as shown by firm lines in Fig. 4.12.

2 When the vehicle is steering to the left, the position of the gear is shown by
dotted lines in Fig. 4.12. In this position, the lines of the front wheel axle
intersect on the back wheel axle at I, for correct steering.

3 When the vehicle is steering to the right, the similar position may be obtained.

4.10 Universal or Hooke’s Joint

— A Hooke’s joint is used to connect two shafts, which are intersecting at a small angle,
as shown in Fig.4.10. The end of each shaft is forked to U-type and each fork
provides two bearings for the arms of a cross.

— The arms of the cross are perpendicular to each other. The motion is transmitted
from the driving shaft to driven shaft through a cross.
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Fig. 4.13 Hooke’s Joint
— The main application of the Universal or Hooke’s joint is found in the transmission
from the gear box to the differential or back axle of the automobiles. It is also used
for transmission of power to different spindles of multiple drilling machines.

4.11 Ratio of shaft velocities

— The top and front views connecting the two shafts by a universal joint are shown in
Fig. 4.11. Let the initial position of the cross be such that both arms lie in the plane of
the paper in front view, while the arm AB attached to the driving shaft lies in the
plane containing the axes of the two shafts.

— Let the driving shaft rotates through an angle 8, so that the arm AB moves in a circle
to a new position A1 B1 as shown in front view.

— Alittle consideration will show that the arm CD will also move in a circle of the same
size. This circle when projected in the plane of paper appears to be an ellipse.
Therefore the arm CD takes new position C1D1 on the ellipse, at an angle 8. But the
true angle must be on the circular path.

— To find the true angle, project the point C1 horizontally to intersect the circle at C2.
Therefore the angle COC2 (equal to @) is the true angle turned by the driven shaft.
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In triangle OC1M, angle OC:M = ©
OM........cceuv.....
tanf = — (D)
MC1
In triangle OC2N, angle OC2N= @
tan@ = 0N = ON . ....(ii) (NCz=MGC)
NC, MC,
Dividing eq. (i) by (ii)
tan@ =ON — ON
NC, MC,

But

OM = ON1 cosa = ON cosa (a = angle of inclination of driving and driven

shaft)
tan @ B ON cos«a

tan @ - ON
tanf = tan® X cosa............ (iii)

= Cosa

Let,



de
w = angular velocity of driving shaft =

t
w1 = angular velocity of driven shaft = ﬁ
dt
— Differentiating both side of eq. (iii
& a- (i) do
sec2f X = cosa X sectQPx
dt dt
sec20 X w= cosa X sec’?®d X w1
w1 sec? 0
W cosa X sec’
1 .
= e (D)
c0s20 X cosa X sec?Q
—  Weknow that,
tan2 0
2 — 2 =
sec2 =1+ tan?2@ =1+ ol a

sin2 6
=1+

cos?20 X cos?a
cos?2f8 X cos?a+ sin26

cos? 6 X cos?a
_cos28 X (1-—sin?a) +sin2f

cos20 X cos?a

_c0s?0 — sin?a X cos? 6 + sin? 6

cos20 X cos?a

_1—sin? a X cos?6

cos2 6 X cos?a
— Substituting this value in eq. (iv)
w1 1 y cos?f X cos’a

w cos?2f X cosa 1 — sin2 a X cos26

4.12 Maximum and Minimum speed of Driven Shaft

w1 cosa
w 1— sin2 a X cos20
w X cosa )

1—sin @ X cos26
— The value of w1 will be minimum for a given value of a, if the denominator of eq. (I)
is minimum.
cos?20 =1, i.e. © =0° 180°, 360° etc.
— Maximum speed of the driven shaft,

W cosa W X COS @ w
w = = —
1(max) .
1— sin?a cos? cos a




_ N
N 1(max) cos a

Similarly, the value of w1is minimum , if the denominator of eq. (i) is maximum, this
will happen, when (sin? @ X cos2 8) is maximum, or
cos20 =0, i.e. © =90°, 270° etc.

4.13 Polar diagram —salient features of driven shaft speed

For one complete revolution of the driven shaft, there are two points i.e. at 0° and
180° as shown by points 1 and 2 in Fig. Where the speed of the driven shaft is
maximum and there are two points i.e. at 90° and 270° as shown by point 3 and 4
where the speed of the driven shaft is minimum.

S w,{min) A

““---.____-"_x :_'J_ll__.---"'ﬁ.
?‘1'::___—17__; 8

~— 4 (mMax) —Pl-i—m.l{max} —

Fig. 4.15 polar diagram

Since there are two maximum and two minimum speeds of the driven shaft,
therefore there are four points when the speeds of the driven and driver shaft are
same. This is shown by points, 5, 6, 7 and 8 in Fig.

Since the angular velocity of the driving shaft is usually constant, therefore it is
represented by a circle of radius w. The driven shaft has a variation in angular
velocity, the maximum value being w/cos a and minimum value is w cos a. Thus it is
represented by an ellipse of semi-major axis w/cos a and semi-minor axis w cos a, as
shown in Fig.4.15.

4.14 Double Hooke’s Joint

The velocity of the driven shaft is not constant, but varies from maximum to
minimum values. In order to have a constant velocity ratio of the driving and driven
shafts, an intermediate shaft with a Hooke’s joint at each end as shown in Fig. , is
used. This type of joint is known as double Hooke’s joint.



Intermediate -

shaft ’/
1 —
T ol — 5 .__||I <G
Driving Drivin
shaft shaft S

Fig. 4.16 double Hooke’s joint

— For shaft A and B,

tanf =tan® X cosa

— For shaft B and C,

tany =tan @ X cosa

— This shows that the speed of the driving and driven shaft is constant. In other words,

this joint gives a velocity ratio equal to unity, if

1 The axes of the driving and driven shafts are inthe same plane, and
2 Thedriving and driven shafts make equal angles with the intermediate shaft.

4.15 Examples:

1.

In a Davis steering gear, the distance between the pivots of the front axle is 1.2
metres and the wheel base is 4.7 metres. Find the inclination of the track arm

to the longitudinal axis of the car, when it is moving along a straight path.
Given:c=12m;b=4.7m

Let, a = Inclination of the track arm to the longitudinal axis.

We know that

C
_ = 12
tana =__ = 0.222
2b 2 x47
a =14.5°

Two shafts with an included angle of 160° are connected by a Hooke’s joint.
The driving shaft runs at a uniform speed of 1500 r.p.m. The driven shaft carries
a flywheel of mass 12 kg and 100 mm radius of gyration. Find the maximum
angular acceleration of the driven shaft and the maximum torque required.

Given: N = 1500 rpm; m = 12 kg; k = 100 mm ; o = 20°

We know that angular speed of drivinf shaft,
500 rad
w=2Tm =157

60 s

The mass moment of inertia of the driven shaft,
I=mx K2=12 x 0.12 =0.12 kg.m?



Max. angular acceleration of driven shaft,

sin2a X 2 sin2 20 X 2
cos 260 = = = 0.124
2 — sin2a 2— sin2 20
6 = 41.45°
dw1 w? X cosa X sin260 X sin? a
dt

(1 — sin? a X cos? H)L

1572 X cos20 X sin84.9 X sin? 20 rad

=3090 —-

2
(1 — sin2 20 X cos? 44.45)

Max torque req.

dw,
=1x =0.12x 3090 = 371 N.m

dt
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GEARS




5.1

5.2

Introduction

If power transmitted between two shafts is small, motion between them may be
obtained by using two plain cylinders or discs 1 and 2 as shown in fig.

If there is no slip of one surface relative to the other, a definite motion of 1 can be
transmitted to 2 and vice-versa. Such wheels are termed as “friction wheels”.
However, as the power transmitted increases, slip occurs between the discs and the
motion no longer remains definite.

Assuming no slipping of the two surfaces, the following kinematic relationship exists
for their linear velocity:

To transmit a definite motion of one disc to the other or to prevent slip between the
surfaces, projection and recesses on the two discs can be made which can mesh with
each other. This leads to formation of teeth on the discs and the motion between
the surfaces changes from rolling to sliding. The discs with the teeth are known as
gears or gear wheels.

It is to be noted that if the disc | rotates in the clockwise direction, 2 rotates in the
counter clockwise direction and vice-versa.

Fig. 5.1

Advantages and Disadvantages of Gear Drive

Advantages

1. It transmits exact velocity ratio.

2. It may be used to transmit large power.

3. It has high efficiency.

4. It has reliable service.

5. It has compact layout.

Disadvantages

1. The manufacture of gears required special tools and equipment.

2. The error in cutting teeth may cause vibrations and noise during operation.
3. They are costly.



5.3 Classification of Gears

5.3.1.
A.

According to the position of axes of the shafts
The axes of the two shafts between which the motion is to be transmitted, may
be Parallel shaft,
Intersecting (Non parallel) shaft
Non-intersecting and non-parallel shaft.

A. Parallel shaft

Spur gear

The two parallel and co-planar shafts connected by the gears are called spur
gears. These gears have teeth parallel to the axis of the wheel.

They have straight teeth parallel to the axes and thus are not subjected to axial
thrust due to tooth load.

At the time of engagement of the two gears, the contact extends across the
entire width on a line parallel to the axis of rotation. This results in sudden
application of the load, high impact stresses and excessive noise at high speeds.

If the gears have external teeth on the outer surface of the cylinders, the shaft
rotate in the opposite direction.

In an internal spur gear, teeth are formed on the inner surface of an annulus ring.
An internal gear can mesh with an external pinion (smaller gear) only and the
two shafts rotate in the same direction.

Line
contact

Fig.5.3 (a) Spur Gear

Spur rack and pinion

Spur rack is a special case of a spur gear where it is made of infinite diameter so
that the pitch surface is plane.

The spur rack and pinion combination converts rotary motion into translator
motion, or vice-versa.

It isused in a lathe in which the rack transmits motion to the saddle.



& =

Line contact
Fig. 5.3(b) Rack and pinion

Helical Spur Gears
In helical gears, the teeth are curved, each being helical in shape. Two mating
gears have the same helix angle, but have teeth of opposite hands.
At the beginning of engagement, contact occurs only at the point of leading edge
of the curved teeth. As the gears rotate, the contact extends along a diagonal
line across the teeth. Thus, the load application is gradual which results in low
impact stresses and reduction in noise. Therefore, the helical gear can be used at
higher velocities than the spur gears and have greater load-carrying capacity.
Helical gears have the disadvantage of having end thrust as there is a force
component along the gear axis. The bearing and assemblies mounting the helical
gears must be able to withstand thrust loads.
Double helical: A double-helical gear is equivalent to a pair of helical gears
secured together, one having a right hand helix and other left hand helix.

e The teeth of two rows are separated by groove used for tool run out.

e Axial thrust which occurs in case of single-helical gears is eliminated in

double-helical gears.
e This is because the axial thrusts of the two rows of teeth cancel each
other out. These can be run at high speeds with less noise and vibrations.

Herringbone gear: If the left and the right inclinations of a double-helical gear
meet at a common apex and there is no groove in between, the gear is known as

Herringbone gear.

> Thrust

\7
7

Driver
Helical gear Herringbone gear
(c) (d)

Fig. 5.3




Intersecting Shafts

The two non-parallel or intersecting, but coplanar shafts connected by gears are
called bevel gears

When teeth formed on the cones are straight, the gears are known as bevel
gears when inclined, they are known as spiral or helical bevel.

Straight Bevel Gears ( http://WWW.bEVElgea r.co.za)

The teeth are straight, radial to the point of intersection of the shaft axes and
vary in cross section throughout their length.

Usually, they are used to connect shafts at right angles which run at low speeds
Gears of the same size and connecting two shafts at right angles to each other
are known as “Mitre” gears.

Fig. 5.3(e) Straight Bevel Gears

Spiral Bevel Gears

When the teeth of a bevel gear are inclined at an angle to the face of the bevel,
they are known as spiral bevels or helical bevels.

They are smoother in action and quieter than straight tooth bevels as there is
gradual load application and low impact stresses. Of course, there exists an axial
thrust calling for stronger bearings and supporting assemblies.

These are used for the drive to the differential of an automobile.



Fig. 5.3(f) Spiral Bevel Gear
Zero Bevel Gears
Spiral bevel gears with curved teeth but with a zero degree spiral angle are
known as zero bevel gears.
Their tooth action and the end thrust are the same as that of straight bevel gears
and, therefore, can be used in the same mountings.
However, they are quieter in action than the straight bevel type as the teeth are
curved.

Fig. 5.3(g) Zero Bevel Gears

C. Non-intersecting and non-parallel shaft(Skew shaft)

The two non-intersecting and non-parallel i.e. non-coplanar shaft connected by
gears are called skew bevel gears or spiral gears and the arrangement is known
as skew bevel gearing or spiral gearing.

In these gears teeth have a point contact.

These gears are suitable for transmitting small power.

Worm gear is as special case of a spiral gear in which the larger wheel, usually,
has a hollow shape such that a portion of the pitch diameter of the other gear is
enveloped on it.



Fig.5.3 (h)Non-intersecting and non-parallel shaft

5.3.2.  According to the peripheral velocity of the gears

(a) Low velocity V <3 m/sec
(b) Medium velocity 3<V<15m/sec
(c) High velocity V > 15 m/sec

5.3.3.  According to position of teeth on the gear surface
(a) Straight,

(b) Inclined, and

(c) Curved.



5.4 Terms Used in Gears

S0 | Addendum circle
< Addendum AW
\ \ / Pitch surface element

\ \\N_\Dedendum - ‘

Working depth

P
-~ o H H
o Pitch circle
> oy
~
\ 4
L ARV AN
e 4 b B ™
® % A \ ‘\&——»—Tooth thickness
L & Circular pitch—«¢ > ' ¥
\\\ - Total depth \— Tooth space _/\
% Root or dedendum circle

\\- Clearance

\__ Clearance or
working depth circle

Fig.5.4 Terms used in gears.

1. Pitch circle. It is an imaginary circle which by pure rolling action, would give the same
motion as the actual gear.

2. Pitch circle diameter. It is the diameter of the pitch circle. The size of the gear is usually
specified by the pitch circle diameter. It is also known as pitch diameter.

3. Pitch point. It is a common point of contact between two pitch circles.

4. Pitch surface. It is the surface of the rolling discs which the meshing gears have replaced

at the pitch circle.

5. Pressure angle or angle of obliquity. It is the angle between the common normal to two
gear teeth at the point of contact and the common tangent at the pitch point.
— For more power transmission lesser pressure on the bearing and pressure angle
must be kept small.
— ltis usually denoted by @.

— The standard pressure angles are 20° and 25°.Gears with 14 12° pressure angle has

become obsolete.

6. Addendum. It is the radial distance of a tooth from the pitch circle to the top of the tooth.

e Standard value =1 module



7. Dedendum. It is the radial distance of a tooth from the pitch circle to the bottom of the
tooth.
e Standard value = 1.157 module

8. Addendum circle. It is the circle drawn through the top of the teeth and is concentric with
the pitch circle.

9. Dedendum circle. It is the circle drawn through the bottom of the teeth. It is also called
root circle.

10. Clearance. It is the radial difference between the addendum and the Dedendum of a
tooth.
Addendum circle diameter =d+ 2m
Dedendum circle diameter = d-2x1.157m
Clearance =1.157m-m
=0.157m

11. Full depth of Teeth It is the total radial depth of the tooth space.
Full depth= Addendum + Dedendum

12. Working Depth of Teeth The maximum depth to which a tooth penetrates into the
tooth space of the mating gear is the working depth of teeth.
e Working depth = Sum of addendums of the two gears.

15. Working depth. It is the radial distance from the addendum circle to the clearance circle.
It is equal to the sum of the addendum of the two meshing gears.

16. Tooth thickness. It is the width of the tooth measured along the pitch circle.

17. Tooth space. It is the width of space between the two adjacent teeth measured along
the pitch circle.

18. Backlash. It is the difference between the tooth space and the tooth thickness, as
measured along the pitch circle. Theoretically, the backlash should be zero, but in actual
practice some backlash must be allowed to prevent jamming of the teeth due to tooth
errors and thermal expansion.

19. Face of tooth. It is the surface of the gear tooth above the pitch surface.

20. Flank of tooth. It is the surface of the gear tooth below the pitch surface.
21. Top land. It is the surface of the top of the tooth.

22. Face width. It is the width of the gear tooth measured parallel to its axis.



20. Fillet It is the curved portion of the tooth flank at the root circle.

21. Circular pitch. 1t is the distance measured on the circumference of the pitch circle from
point of one tooth to the corresponding point on the next tooth.
e Itisusually denoted by pc .

Mathematically,
nd
Circular pitch, p.=—
T

Whered = Diameter of the pitch circle, and
T =Number of teeth on the wheel.
e The angle subtended by the circular pitch at the center of the pitch circle is known as
the pitch angle.

22. Module (m). It is the ratio of the pitch diameter in mm to the number of teeth.

m="
T
nd

Also =—=7Im
Pc T

e Pitch of two mating gear must be same.

23. Diametral Pitch (P) It is the number of teeth per unit length of the pitch circle diameter
ininch.
OR
It is the ratio of no. of teeth to pitch circle diameter in inch.
p_-—
¢ d
e The recommended series of modules in Indian Standard are 1, 1.25, 1.5, 2, 2.5, 3, 4,
5,6,8,10, 12, 16, and 20. The modules 1.125, 1.375, 1.75, 2.25, 2.75, 3.5,4.5, 5.5, 7,
9, 11, 14 and 18 are of second choice.

24. Gear Ratio (G). It is the ratio of the number of teeth on the gear to that on the pinion.

T
G=_ \Where T=No of teeth on gear
t

t = No. of teeth on pinion

25. Velocity Ratio (VR) The velocity ratio is defined as the ratio of the angular velocity of the
follower to the angular velocity of the driving gear.

VR:wZZNZZdlzT

W, N1 dz



26. Length of the path of contact. It is the length of the common normal cut-off by the
Addendum circles of the wheel and pinion.

OR
The locus of the point of contact of two mating teeth from the beginning of engagement to
the end of engagement is known as the contact.

a. Path of Approach Portion of the path of contact from the beginning of the
engagement to the pitch point.

b. Path of Recess Portion of the path of contact from the pitch point to the end
of engagement.

27. Arc of Contact The locus of a point on the pitch circle from the beginning to the end of
engagement of two mating gears is known as the arc of contact.

a. Arcof Approach It is the portion of the arc of contact from the beginning of
engagement to the pitch point.

b. Arc of Recess The portion of the arc of contact from the pitch point to the
end of engagements the arc of recess.

28. Angle of Action (0) It is the angle turned by a gear from the beginning of engagement to
the end of engagement of a pair of teeth, i.e., the angle turned by arcs of contact of
respective gear wheels.

0 =a+BWhere a =Angle of approach

B =Angle of recess

29. Contact ratio .It is the angle of action divided by the pitch angle
o a+p

Yoy
OR

Contact ratio =

. Arcofcontact
Contact ratio =

Circularpitch



5.5 Condition for Constant Velocity Ratio of Toothed Wheels —Law
of Gearing

— To understand the theory consider the portions of two gear teeth gear 1 and gear 2 as
shown in figure 1.5.

— The two teeth come in contact at point C and the direction of rotation of gear 1 is
anticlockwise & gear 2 is clockwise.

— Let TT be the common tangent & NN be the common normal to the curve at the point of
contact C. From points O, &0;, draw O1 A & O B perpendicular to common normal NN.

— When the point D is consider on gear 1, the point C moves in the direction of “CD” &
when it is consider on gear 2. The point C moves in direction of “CE”.

— The relative motion between tooth surfaces along the common normal NN must be equal
to zero in order to avoid separation.

— So, relative velocity

V1 cosa = V3 cosO

(@1 x 01 C) cosa = (@2 x 0, C) cosa (" V=ro).. (1)

Fig.5.5 Law of gearing




— But from AO AC, cosa = Ci
1 0,C
and from AO BC, cosf= OZ_B
2 0,C
Putting above value in equation (1) it become

A B
(o x0 c)Ol =(o x0 C) 0,
1 1 ~N ~ 2 2 ~ ~
01C OZC
01 X0, A=m0,B
&—OZB ................................................................................... (2)
,  O.A

— From the similar triangle AO,AP & AQO, BP
0,B _ 03P
O,A O,P

— Now equating equation (2) & (3)

o, O,A O0,P AP
— From the above we can conclude that the angular velocity ratio is inversely proportional

to the ratio of the distances of the point P from the central 01& O..

— If it is desired that the angular velocities of two gear remain constant, the common
normal at the point of contact of two teeth always pass through a fixed point P. This
fundamental condition is called as law of gearing. Which must be satisfied while
designing the profiles of teeth for gears.

5.6 Standard Tooth Profiles or Systems

Following four types of tooth profiles or systems are commonly used in practice for
interchangeability:

1D
a) 14_ composite system.
2

1-
— full depth involute system.
2

c) 20°full depth involute system.

b) 14

d) 20°stub involute system.

1 °
a) 14 _ composite system:



— This type of profile is made with circular arcs at top and bottom portion and middle
portion is a straight line as shown in Fig. 1.6(a).

— The straight portion corresponds to the involute profile and the circular arc portion
corresponds to the cycloidal profile.

— Such profiles are used for general purpose gears.

1-
Fig.5.6(a) 14
2

composite system

1-

b) 14 full depth involute system:
2

— This type of profile is made straight line except for the fillet arcs.

— The whole profile corresponds to the involute profile. Therefore manufacturing of such
profile is easy but they have interface problem.

. 1-
Fig.5.6(b) 14 _ full depth involute system
2

c) 20°full depth involute system:

. — 1-
— Thistype of profile is same as 14 _ £, depth involute system except the pressure angle.



. 1-
— Theincrease of pressure angle from 14 _ 1, 70 resultsin a stronger tooth, since the
2

tooth acting as a beam is wider at the base.
— This type of gears also have interference problem if number of teeth is less.

Tm

\ 20°

im

1.187m

Fig.5.6(c) 20’ full depth involute system

d) 20°stub involute system:

— The problem of interference in 20 full depth involute system is minimized by removing
extra addendum of gear tooth which causes interference.

— Such modified tooth profile is called “Stub tooth profile”.

— This type of gears are used for heavy load.

0.8m

im

Fig.5.6(d) 20 stub involute system
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5.7 Length of Path of Contact And Length of Arc of Contact

5.7.1 Length of Path of Contact

O,

Base circle
; Pitch circle

Addendum
circles

-

Pinion %A [ Base " Pitch circle
v circle
o,

Fig.5.7 Length of path of contact
When the pinion rotates in clockwise direction, the contact between a pair of
involute teeth begins at K (on the flank near the base circle of pinion or the outer
end of the tooth face on the wheel) and ends at L (on the flank near the base circle
of wheel).
MN is the common normal at the point of contacts and the common tangent to the
base circles.
The point K is the intersection of the addendum circle of wheel and the common
tangent.
The point L is the intersection of the addendum circle of pinion and common
tangent.
Length of path of contact is the length of common normal cutoff by the addendum
circles of the wheel and the pinion.
Thus the length of path of contact is KL which is the sum of the parts of the path of
contacts KP and PL. The part of the path of contact KP is known as path of approach
and the part of the path of contact PL is known as path of recess.
L.P.C=KL
=KP+PL
Where, KP = path of approach
PL = path of recess



Let

R = O,P = pitch circle radius of wheel
Ra = 02K = addendum circle radius of wheel
r = O1P = pitch circle radius of pinion
ra = O1L = addendum circle radius of pinion

Length of the path of contact = Path of approach + path of recess

=KP +PL

= (KN—PN) + (ML -MP)

= (o2 -0 N* —pN)+(yJ0.2 -0 M* —wmip)

=(\/RA2 —(Reos @)’ —Rsin¢)+( r,2—(rcosg)’ —rsine))

5.7.2 Length of Arc of Contact

The arc of contact is the path traced by a point on the pitch circle from the beginning
to the end of engagement of a given pair of teeth.

The arc of contact is EPF or GPH.

Considering the arc of contact GPH, it is divided into two parts i.e. arc GP and arc PH.
The arc GP is known as arc of approach and the arc PH is called arc of recess.

The angles subtended by these arcs at O1 are called angle of approach and angle of
recess respectively.

Length of the arc of contact GPH = (GP + PH)

= Arc of approach+ Arc of recess

KP+ PL

cos & cos @

__KP+PL

COSCoS @

KL

cos g

103



_ Length of path of contact

cos g
Contact Ratio (or Number of Pairs of Teeth in Contact)

— The contact ratio or the number of pairs of teeth in contact is defined as the ratio of
the length of the arc of contact to the circular pitch.

Mathematically,
Contact ratio or number of pairs of teeth in contact

_ Length of arc of contact
Circular pitch

_ Length of arc of contact

mm

Note:

— For continuous transmission of the motion, at least one tooth of any one wheel must
be in contact with another tooth of second wheel so ‘n” must be greater than unity.

— If ‘n’ lies between 1& 2, no. of teeth in contact at any time will not be less than one
and will never mate two.

— If ‘n’ lies between 2 & 3,it is never less than two pair of teeth and not more than
three pairs and so on.

— If ‘n’ is 1.6, one pair of teeth are always in contact where as two pair of teeth are in
contact for 60% of the time

5.8 Interference in Involute Gears

02
“:‘l\ Base circle
o\ Pitch circle
\ ) L

) Actual add. circle
/

e

Max. addendum circle

Fig.5.8 Interference in involute gears



— Fig. shows a pinion with centerQj, in mesh with wheel or gear with centreO,. MN is
the common tangent to the base circles and KL is the path of contact between the
two mating teeth.

— A little consideration will show that if the radius of the addendum circle of pinion is
increased to O1N, the point of contact L will move from L to N. When this radius is
further increased, the point of contact L will be on the inside of base circle of wheel
and not on the involute profile of tooth on wheel. The tip of tooth on the pinion will
then undercut the tooth on the wheel at the root and remove part of the involute
profile of tooth on the wheel. This effect is known as interference, and occurs when
the teeth are being cut. In brief, the phenomenon when the tip of tooth undercuts
the root on its mating gear is known as interference.

— Similarly, if the radius of the addendum circles of the wheel increases beyond 0O.M,
then the tip of tooth on wheel will cause interference with the tooth on pinion.

— The points M and N are called interference points. Interference may be avoided if
the path of contact does not extend beyond interference points. The limiting value
of the radius of the addendum circle of the pinion is O1N and of the wheel is O;M.

How to avoid interference?

e The interference may only be avoided, if the point of contact between the two teeth
is always on the involute profiles of both the teeth.
OR

e Interference may only be prevented, if the addendum circles of the two mating gears
cut the common tangent to the base circles between the points of tangency.

— When interference is just avoided, the maximum length of path of contact is MN
Maximum length of path of contact=MN

—MP +PN

=rsing+ Rsing
= (r + R)sin¢

(r+R)sing

Maximum length of arc of contact =
Cos@
Note:
In case the addenda on pinion and wheel is such that the path of approach and path of

recess are half of their maximum possible values, then



e Path of approach, KP = EMP

(\/RAZ —(Rcosaf)z —Rsing |= irsin(z)

pL=1pN
2

. 1
(JrAZ _(rCOsﬂ)2 ~reing ): 2Rsm¢

e Path ofrecess,

e Length of the path of contact =kp+pL

ZEMP +EPN
2 2

3 (r +R)sing

- 2

5.9 Minimum Number of Teeth on the Pinion in Order to Avoid

Interference

— In order to avoid interference, the addendum circles for the two mating gears must
cut the common tangent to the base circles between the points of tangency.

— The limiting condition reaches, when the addendum circles of pinion and wheel pass
through points N and M (see Fig.) respectively.

Let t = Number of teeth on the pinion,
T = Number of teeth on the wheel,
m = Module of the teeth,
r = Pitch circle radius of pinion=mt /2
G=Gearratio=T/t=R/r
@ = Pressure angle or angle of obliquity.

From A O:iNP,
O,N*=0,P* +PN* —20PxPNcos(O PN)



~.ON? =r? + (Rs‘.in(zs)2 —2r(Rsing)xcos(90 +9)

S ON? =r2 + n(zS)2 —2r(Rsing)xcos(90 +9)
Rsi

OlN2 =r2 +R%sin? @ + 2rRsin? @

L2 zr R2sin¢  2Rsin2g |
ON=r |1+ " |

2 zr R2sin¢  2Rsin2g |

0N o1 + |
t r2 r J
2 2|_
ON’=2 R(R ) |
1 1+ [ +2 sm2¢|
AN |

mt
=" R(R
01N \/1+—(—+2jsin2¢
2 rir

Let A,-m= Addendum of the pinion, where Ap is a fraction by which the standard
addendum of one module for the pinion should be multiplied in order to avoid

interference.

Addendum of the pinion =0,;N-0O,P

_mt mt
AP.m— \/1+I(I+2jsin2¢_

2 tit 2
. _mt mt
S A M= \/1+I(I+2]sin2¢_
2 tit 2
A .m:m—tr T, T 2 —1—’
P | —L— 2 [sin @
2|Vt ) I



’ mzm—tl_ N 7 —
TR
2|V tlt ) I

_tr _T(T ) 1]
, \/ t(t 2me @ h
A ’-L T/T . 2 1—|

| | 2|S|n s |
2|L\/ t\t ) I
A=t|— |4.T'[T \ 2 1—|

7| —2kn g |
2|L\/ tt ) I

-'-t:i‘ T TZAP\. ]
|\/1+ _+2]sin"p —1]
votle ) I

2A;

t=
| \/1 +G(G+ 2)sin? p — ﬂJ
Note:

— If the pinion and wheel have equal teeth, then G=1.

2A,

:Hm_l]

Min. no of teeth on pinion

Sr.

no System of gear teeth Min. no of teeth on pinion
1 14§° Composite 12
2 14§°Fu|l depth involute 32
3 20° Full depth involute 18
4 20°Stub involute 14




5.10 Minimum Number of Teeth on the Wheel in Order to Avoid
Interference

Let T = Minimum number of teeth required on the wheel in order to avoid
interference,
A, -m= Addendum of the wheel, where Aw is a fraction by which the standard

Addendum for the wheel should be multiplied.
From AO,MP

0,M* =0,P* +PM* —20,PxPMcos(O PM)

SOM: =R? + (rsingz))2 —2r(Rsing)xcos(90+9)

2

S O.M? =R? +r?sin? @ + 2rRsin? ¢

2
2|_ 2sin2g  2rsing |
1+ + |
TR TR

soMz=galq, r(r, ) 5 ]
2 | | 2sin @ |

L RWR ) ]
.'.OZM:R\/1+%(%+2jsin2¢

mT
O M= \/1+£(£+2]sin2¢

. 2
..OZM :R

2 R{R

Addendum of the wheel=0,M-0,P

_mT mT
AWm— \/1+£(£+2jsin2¢_
2

2 T\ T
mrl 1
SJA M= |J1+I[I+ \. 1
w —L— 2fsin ¢ |
21NV 11 ) I



Am——Tr [ oty T2 —1—\
w |J —L— 2]sin @
2/ V1t ) I
1)
_ - + [ + \ 2
A= 1+ 4+ =1
, | = 2sing |
2| T\T ) ]
2A
...T:| Y
t[ t
|\/1+(+2|f|n2¢—1|
i TT |
24,

.'.TZI
|
|

TERTE
|_\/1+G\(G+2Fm ;z)—1|U

Note:

— From the above equation, we may also obtain the minimum number of teeth on
pinion. Multiplying both sides by t/T,

¢ 24 xt
Tx =_ YT _
T T T7 1 ] |
| e | " +2fsin20 1]
N 6le J |
. 2AW
..t= r .l
! A — l
G|\/1+i+2|sin2¢—l|
N ele ) ]

— If wheel and pinion have equal teeth, then G =1,

. 2A
S T=
L«fl+3sin2 @ —1]



5.11 Minimum Number of Teeth on a Pinion for Involute Rack in
Order to Avoid Interference

Pitch line (rack)

Fig.5.11 Rack and pinion in mesh

Let t = Minimum number of teeth on the pinion,
m-t
r = Pitch circle radius of the pinion = ——and
2

@= Pressure angle or angle of obliquity, and
A; ‘-m= Addendum for rack, where Ag is the fraction by which the standard

addendum of one module for the rack is to be multiplied.

Addendum forrack, Agr-m=LH
S Ag-m=PLsin ¢
S Ag-m=r sin ¢xsin ¢
SA e m=r sin’d

mt sin?
.'.AR'm :—d)



t= 24,

sin

Note:

— In case of pinion, max. value of addendum radius to avoid interference if AF

=0,M? + AP

=(rcos ¢)2 +(Rsing + rsin(z))2

— Max value of addendum of pinion is

(A )max =r\/1+$($+zjsin2 -1

2 ]
]

5.12 Comparison of Cycloidal and Involute tooth forms

Cycloidal teeth

Involute teeth

Pressure angle varies from maximum at
the beginning of engagement, reduce to
zero at the pitch point and again increase
to maximum at the end of the engagement
resulting in smooth running of gears.

Pressure angle is constant throughout the
engagement of teeth. This result in smooth
running of the gears.

It involves double curves for the teeth,
epicycloid and hypocycloid. This
complicates the manufacturer.

It involves the single curves for the teeth
resulting in simplicity of manufacturing
and of tool

Owing to difficulty of manufacturer, these
are costlier

These are simple to manufacture and thus
are cheaper.

Exact center distance is required to
transmit a constant velocity ratio.

A little variation in a centre distance does
not affect the velocity ratio.

Phenomenon of interference does not
occur at all.

Interference can occur if the condition of
minimum no. of teeth on a gear is not
followed.

The teeth have spreading flanks and thus
are stronger.

The teeth have radial flanks and thus are
weaker as compared to the Cycloidal form
for the same pitch.

In this a convex flank always has contact
with a concave face resulting in less wear.

Two convex surfaces are in contact and
thus there is more wear.




5.13 HELICAL AND SPIRAL GEARS

In helical and spiral gears, the teeth are inclined to the axis of a gear. They can be
right handed or left-handed, depending upon the direction in which the helix slopes
away from the viewer when a gear is viewed parallel to the axis of the gear.

In Fig. Gearl is a right-handed helical gear whereas 2 are left handed. The two
mating gears have parallel axes and equal helix angle o ORy . The contact between
two teeth on the two gears is first made at one end which extends through the width
of the wheel with the rotation of the gears.

Figure (a) shows the same two gears when looking from above. Now, if the helix
angle of the gear 2 is reduced by a few degrees so that the helix angle of the gear 1 is
Y1, and that of gear 2 isy 2 and it is desired that the teeth of the two gears still mesh
with each other tangentially, it is essential to rotate the axis of gear 2 through some
angle as shown in Fig. (b).

ﬁ:AF

Pc

Fig.5.13(a) Helical Gear

The following definitions may be clearly understood in connection with a helical gear
as shown in Fig.

1. Normal pitch. It is the distance between similar faces of adjacent teeth, along a
helix on the pitch cylinder normal to the teeth. It is denoted by pn.

2. Axial pitch. It is the distance measured parallel to the axis, between similar faces
of adjacent teeth. It is the same as circular pitch and is therefore denoted by pc. If a
is the helix angle, then

Pn
Cosa

Circular pitch,p, =

Note: The helix angle is also known as spiral angle of the teeth.



Efficiency of Spiral Gears

— A pair of spiral gears 1 and 2 in mesh is shown in Fig. . Let the gear 1 be the driver
and the gear 2 the driven. The forces acting on each of a pair of teeth in contact are
shown in Fig.

— The forces are assumed to act at the center of the width of each teeth and in the
plane tangential to the pitch cylinders

P 2 P "F_az
/P (=
ﬂ'._! — , ) L .JP"
p N Lo F
P Fi
A Fa, R X ?_ila-L 7 700 4
) Ry .-~ / _ f:r./
ar ¥ e
h i . / ~ Driven
x A

\ B

Common normal at O

Fig.5.13 (b)
Let F1=Force applied tangentially on the driver,
F, = Resisting force acting tangentially on the driven,

F,; = Axial or end thrust on the driver,

F,, = Axial or end thrust on the driven,
Ry = Normal reaction at the point of contact

¢ = Angle of friction,
R = Resultant reaction at the point of contact, and
0 = Shaft angle =a +oi

...(* Both gears are of the same hand)
From triangle OPQ, F1=R cos(ocl —(I))
~.Work input to the driver = F1 xnd1 -N1 =Rcos(oc1 —¢)x71;d1 ‘N1

From triangle OST, F, =Rcos(c2 + ¢)



..Work output of the driven=F, xmd; ‘N =Rcos(az + (]))xndz ‘N2

.. Efficiency of spiral gears,

_ Work output Reos(a, + ¢)xmd, -N,

Workinput _Rcos(ocl — ¢)xmds -Ns

B @iaz + ¢ )xdz -N»

cos(oi — ¢)xd1 Ny

Pitch circle diameter of gear 1,

d :pc1><T1 _  Pn T,
I Cosa; ™

Pitch circle diameter of gear 2,

d :pc2><T2: Pn T,

X _—
2 T Cosa, T
d, T,Cosa
2= 2 ceeeenn(2)
d, T,Cosa;
N, T
2=t (3)
N, T,

Multiplying equation (2) and (3) we get

d,N, cosou

d;N; cosa.

Substituting this value in equation (1)

cos(a + §)xcosas

i cos(on — ¢)xcosaz (4)

_ cos(a + 0 +¢) +cos(on —az —¢)

cos(ocl +02 — (I)) + cos(ou -0z + ¢)



(
|..
&

cos A-cosB = lz[cos(A +B) + cos(A —B)—|J\|

_ @@ + d))_+ cos(ocl -0 — d))
cos(6—¢)+cos(o ,—a,+¢)

("6:(1 TU‘ )2
Since the angle 6 and ¢ are constants, therefore the efficiency will be maximum,

when  cos(a,— o ,+¢)is maximum e
cos(ou — 02 +¢) =1
o —02 +¢=0

Lou=o ¢ and a,=o 0

Since oa1+02=0 therefore

=0—0 =0-— 0+
o 0 o 0 a1+(|) OR g = ¢

0—d
Similarly o =
2
2
Substitutingou = a2 + ¢ and o2 =a1—¢ inequation (5) we get

_cos!9+¢!+l

M ™ cos(6—-¢)+1



EXAMPLES

Example 5.1: Two spur gears have a velocity ratio of 1/3 the driven gear has 72 teeth
of 8 mm module and rotates at 300 rpm. Calculate the number of teeth and Speed
of driver. What will be the pitch line velocity?

Solution:
Given data Find
VR=1/3 Vp="?
T, = 72 teeth T, =7
m=8mm
N,= 300
VR = Nz — T1
NT,
1_300_T.
3 N, 72

ST =24 &N1 =900 rpm
Pitch line velocity
VP = r10)1 = rz(l)z

_ Zanx (L
60 2

_ 27ch>< mT,
60 2

_ 2mx900 8x24
60 2

=9047.78 mm / sec



Example 5.2: The number of teeth of a spur gear is 30 and it rotates at 200 rpm. What will
be its circular pitch and the pitch line velocity if it has a module of 2 mm?

Solution:
Given data Find:
T= 30 pP.=?
N=200 rpm V,=?
m= 2 mm
Circular pitch Pc=7mm
=12
=6.28mm

Pitch line velocity V,=o-r

2nN
= X =
60 2

_ 2mx200 « 2x30
60 2

=628.3mm/ s

Example 5.3: The following data relate to two meshing gears velocity ratio = 1/3, module =
1mm, Pressure angle 20°, center distance= 200 mm. Determine the number of teeth and the
base circle radius of the gear wheel.

Solution:

Given data Find:
VR=1/3 Ti1=7?
@ = 20° T,=7
C = 200 mm Base circle radius of gear wheel =?
m= 4 mm

N, 1 T
(1) VR=_?*= !



"'T2:3T1 .4.......(1)

Centre distance C = di+d;
2
- 200= M(Te+T2) (o d)
—
U]
ATy +T
200 = AT1+T2)
2
STi+T2=100  .enenn. (2)

By solving equation (1) & (2)

T, =25
T, =75

(2) No of teeth of gear wheel T, =75

dZ
But m=_"
T,

...dz :mTz
c.d2 =300mm

d
Base circle radiusd,, :?Zcoscp

= 300 x€0s20-

2

=141mm
Example 5.4: Each of the gears in a mesh has 48 teeth and a module of 8 mm. The teeth are
of 20° involute profile. The arc of' contact is 2.25 times the circular pitch. Determine the
addendum.
Solution:



Given data Find:

T=1t=48 Addendum =7
m=8mm
@ = 20°

Arc of contact = 2.25P,
Arc of contact =2.25P,

=2.25xmm
= 2.25x7mtx8
=56.55mm

d_2r
Let m="=

t T

mT _ 8x48
2 2

S R=r=

S.R=r=192mm
Also Ra =r, (.toothsizesame)

LAC=—EPC
Coso

L.P.C
C0OS20°

..56.55=

- L.P.C=53.14mm

L.P.C:( R,” —(Rcosg)’ —Rsin¢)+( r,2 —(rcosg)’ —rsin¢)

531422 yR—fRCUSCUW')—Z— 2—|—(R+r)sin¢ (R =r)
L A J A A

~5314=2 g 2—|—(192+192)sin20°

[V ]



5314 =2 f—%ﬁ‘&&l.—?—&l—ml.%
[V A ]
~.yR,’-32551.73 =92.23mm

. Ry=202.63mm

Now Ra =R+ Addendum

. Addendum =R, —R
..Addendum= 10.63mm

Example 5.5: Two involute gears in mesh have 20° pressure angle. The gear ratio is 3 and
the number of teeth on the pinion is 24. The teeth have a module of 6 mm. The pitch line
velocity is 1.5 m/s and the addendum equal to one module. Determine the angle of action
of pinion (the angle turned by the pinion when one pair of teeth is in the mesh) and the
maximum velocity of sliding.

Solution:
Given data Find:
@ = 20° Angle of action of the pinion =?
G=T/t =3 Max. velocity of sliding =?
t=24
m= 6 mm
V,=15m/s

Addendum = 1 module

mt 6x24 mT 6x 72
r=—= =72mm R=—= =216mm
22 2 2
(v T=24x3=72)
r, =r +Add.=72+(1x6) =78mm Ra=R+Add. =216 +(1x6)=222mm

Let the length of path of contact KL =KP+PL

KP =(1/RA2 —(Reosg)’ —Rsin(z))



2
=£\/2222 —(216coszo°) - 2165in20°J

=16.04mm

p|_:( r,.2 —(rcosg )’ —rsin¢)

o 2 . o
=(\/782 —(72coszo ) — 72sin20 j

=14.18mm

Pathofcon
Arcofcontact = athofcontact

cosQ

_ 16.04+14.18
cos20’

=32.16mm
Lengthofarcofcontactx360,

Angleturnedthroughbypinion(0) = - —
circumferenceofpinion

_ 32.16x360°
21X 72

=25.59°

Max.velocityofsliding =(®p + ®g )xKP

vV Vv
(v + —\xKP

L i ) ( V=rm)

(1 1500 1500 |\
175" +316 |

x16.04

=445.6mm/ sec

Example 5.6: Two involute gears in a mesh have a module of 8mm and pressure angle of
20°. The larger gear has 57 while the pinion has 23 teeth. If the addendum on pinion and
gear wheels are equal to one module, Determine

i.  Contact ratio(No. of pairs of teeth in contact )
ii. Angle of action of pinion and gear wheel



iii.  Ratio of sliding to rolling velocity at the
a. Beginning of the contact.
b. Pitch point.
c. End of the contact.

Solution:

Given data Find:
@ = 20° 1. Contact ratio = ?
m = 8 mm 2. Angle of action of pinion and gear = ?
T =57 3. Ratio of sliding to rolling velocity at the
t =23 a. Beginning of contact
Addendum = 1 module b. Pitch point

= 8 mm c. End of contact

i Let the length of path of contact KL =KP+PL

KP = (‘ IR2 -(Reosg )’ - Rsin¢)

(
- —228sin20°
L\/2362 ; (228coszo°) |

)

=20.97mm

PL = ( r,? -(rcose)’ - rsinﬂ)

2
_ (\/1002 —(92coszo°) _ 92$in20°)
=18.79mm

Pathofcontact
Arcofcontact =

cosQ

_KP+KP
cos®

_20.97+18.79
cos20’

=42.29mm



Lengthofarcofcontact

P

Contactratio =

c

42.21
= =1.68 say 2

m

Lengthofarcofcontactx360 °

Angleofactionofpinion(d,) = - —
circumferenceofpinion

_ 42.31x360°

21x 92

=26.34°

°

Angleofactionofpinion(s, ) = Lengthofarcofcontactx360

circumferenceof gear

_ 42.31x360°
27x228

=10.63"

iii.  Ratio of sliding to rolling velocity:

a. Beginning of contact

Slidingvelocity _ (O)p T o, )KP
Rollingvelocity ®,r
)
92  'x20.97
((Dp-i_ P%

|\ 228 )

Mp x92

=0.32

b. Pitch point



Slidingvelocity _ ((Dp + o, )KP

Rollingvelocity .1
(o xa,)x0
®,r
=0

c. End of contact

Slidingvelocity _ ((Dp + o, )P'-

Rollingvelocity ®,r

\>P<Z}8.79

)

Wp X92

(0).#9_222@

=0.287

Example 5.7: Two 20° gears have a module pitch of 4 mm. The number of teeth on gears
land 2 are 40 and 24 respectively. If the gear 2 rotates at 600 rpm, determine the velocity of
sliding when the contact is at the tip of the tooth of gear 2. Take addendum equal to one

module. Also, find the maximum velocity of sliding.

Solution:
Given data Find:
@ = 20° Velocity of sliding =?
m = 4 mm Max. velocity of sliding = ?
N,= 600 rpm
T =40
t=24
Addendum = 1 module
=4 mm
mt 4x24 mT 4x40
r=—= =48mm R=—= =80mm
22 2 2

r,=r + Add. =48 +(1x4)=52mm R,=R+ Add.=80+(1x4)=84mm



(Note: The tip of driving wheel is in contact with a tooth of driving wheel at the end of
engagement. So it is required to find path of recess.)

Path of recess

PL:( r.2 —(rcosg )’ —rsin¢)

( s
:k\/szz —(48c0520 ) — 48sin20 ]

=9.458mm
Velocity of sliding

= ((X)p + Mg )XPL

= 2—75(600 +360)x9.458
( T \
N
| et =N :600x£ =360rpm
- ]
LN T 40 )

=956.82mm/ sec

Path of recess

KP:( R,2—(Rcosg )’ —Rsin¢)

o 2 . [+
=[\/842 —(80coszo ) — 80sin20 j

=10.108mm

Max. Velocity of sliding

= ((Dp + g )xKP

2
== (600 +360)x10.108
60

=1016.16mm/ sec



Example 5.8: Two 20° involute spur gears mesh externally and give a velocity ratio of 3. The
module is 3 mm and the addendum is equal to 1.1 module. If the pinion rotates at the 120
rpm, determine

l. Minimum no of teeth on each wheel to avoid interference

Il. Contact ratio

Solution:
Given data Find:
¢ = 200 tmin&“Tmin= ?
VR= 3 Contact ratio =7
m= 3
N,= 120
Addendum = 1.1 module
2A
l. T=r w .
' H—7r— !
| 1+J _ +2sin“g 1]
N ele J I
.'.-I—:|r 1 /42X1\'1 _i
L L | 2
|\/1+| _+2[sin"20. —1|
TURELN: I I
.. T =49.44teeth
T 51
.. T = 51teeth And t="="=17teeth
3 3
Il.
mt 3x17 mT 3x51
r=—=__  =255mm R=——=___ =76.5mm
2 2 2 2

r,=r +Add.=25.5+(1.1x3) =28.8mm R, =R+ Add. = 76.5+(1.1x3) = 28.8mm

Contactratio = Lengthofpathofcontact

cos xP,



( R,’ —(Rcosgz))2 —Rsin¢)+( r,’ —(rcos;z))2 —rsinq))

€cos20°x tx 3

(\/79.82 —(76.5cos20°)2 —76.5sin20° )+(\/28.82 —(25.5cosO°)2 —25.5$in20°)

c0s20° xtx 3

=178

Thus 1 pair of teeth will always remain in contact whereas for 78 % of the time, 2 pairs of
teeth will be in contact.

Example 5.9: Two involute gears in a mesh have a velocity ratio of 3. The arc of approach is
not to be less than the circular pitch when the pinion is the driver The pressure angle of the
involute teeth is 20°.Determine the least no of teeth on the each gear. Also find the
addendum of the wheel in terms of module.

Solution:
Given data Find:
@ = 20° least no of teeth on the each gear="?
VR = 3 Addendum="?

Arc of approach = circular pitch
= m
..Pathofapproach = Arcofapproachxcos20 °

=1-m-c0s20°
=2.952m cossennarf)

Let the max lengthofpathofapproach=rsin@

_mt sin20°
2

=0.171mt  cee- (2)

Fromeq. 1. And 2.
5.0.171mt=0.2952m

C.t=17.26 =18teeth



T =18x3 = 54teeth

Max. Addendum of the wheel

mtl —+—— |
_—| Ji+—| —+2[sin ¢ 1]
wmax 2|L GKG ) U

1

mxsal 1+ 21 ) 2

= I\/ _l_ 2[sin20° |

2 IV 33 ) 1

=1.2m

Example 5.10: Two 20° involute spar gears have a module of 10 mm. The addendum is equal
to one module. The larger gear has 40 teeth while the pinion has 20 teeth will the gear
interfere with the pinion?

Solution:
Given data Find:
@=20° Interference or not?
m=10 mm

Addendum =1 module

=1x10
=10mm
Let the pinion is the driver
t =20 teeth
T =40 teeth
mt 10x20 mT 10x40
r=—-= =100mm R=—= =200mm
22 22

r,=r+Add.=100+10=110mm Ry,=R+Add.=200+10=210mm

Pathofapproach = ( «/RAZ —(RCOS(?i)2 —Rsin¢)

_ [\/2102 —(200coszo°)2 — 200sin20 J

=25.29mm

To avoid the interference.......



Maxlengthofpathofapproach =rSin@

=100xSin20°
= 34.20mm>25.29mm

So Interference will not occur.

Example 5.11: Two 20° involute spur gears have a module of 10 mm. The addendum is one
module. The larger gear has 50 teeth and the pinion has I3 teeth. Does interference occur? If
it occurs, to what value should the pressure angle be change to eliminate interference?

Solution:
Given data
@=20°
m=10 mm
Addendum =1 module = 10 mm
T=50 and t=13
mt 10x13 mT 10x50
r=—= =65mm R=—= =250mm
22 2 2

r,=r +Add.=65+10=75mm R, =R +Add.=250+10=260mm

Ry = \/(RCOS(p)Z +(RSing +rSing)

- \/(250C0520°)2 +(2508in20 "+ 655in20 )
=258.45mm

Here actual addendum radius Ra (260 mm) > Ramax vValue
So interference will occur.

The new value of @ can be found by comparing



~.R, :\I"](RCosq))2 +(RSing +rSing)

+.260=4](250C0s )’ +(250Sing +655in )’
+.260° =(250C0s0 )’ +(250Sin@ +65Sin® )’

.Cos?¢p =0.861

Sp=21.88°
Note: If pressure angle is increased to 21.88° interference can be avoided

Example 5.12: The following data related to meshing involute gears:
No. of teeth on gear wheel = 60

Pressure angle = 20°

Gear ratio =1.5

Speed of gear wheel = 100 rpm

Module = 8 mm

The addendum on each wheel is such that the path of approach and path of recess
on each side are 40 % of the maximum possible length each. Determine the addendum for
the pinion and the gear and the length of arc of contact.

Solution:
Given data Find:
T=60 Addendum for gear and pinion="?
@=20° Length of arc of contact=?
G=1.5
Ng=100 rpm
m=8 mm

Let pinion is driver...

Max. Possible length of path of approach =rsin¢

. Actual length of path of approach =0.4rsing  (Given in data)

Same way...



Actual length of path of recess = 0.4 Rsing (Given in data)

0.4 rsin(i):(\/RA2 —(Reose) * —Rsin¢)

.'.O.4><160$in20:(\/RA2 — (240c0520)° —2405in20)

..R,=248.33 mm
..Addendumof wheel=248.3—-240=8.3mm
Also

0.4Rsing= Jr,> —(rcosp )’ —rsing

.0.4x240%5in20 = \/rAZ ~(160c0s20)" —160sin20

S r,=173.98=174mm

..Addendumof pinion=174 -160 =14 mm

Pathofcontact
Length of Arcofcontact =

cosQ

_ (rsing +Rsing)x 0.4

cosd

_ (160 +240)x 5in20 x 0.4
cos20

=58.2mm

Example 5.13: A pinion of 20 ° involute teeth rotating at 274 rpm meshes with a gear and
provides a gear ratio of 1.8. The no. of teeth on the pinion is 20 and the module is 8mm .If
interference is just avoided

Determine: 1. Addendum on wheel and pinion

2. Path of contact

3. Max. Velocity of sliding on both side of pitch point
Solution:



Given data Find:

@ = 20° 1.Addndum on wheel andpinion =?
m = 8 mm 2.Pathof contact="?
N,= 275 rpm 3.Max. velocity of sliding onboth side of pitchpoint = ?
T =36
t =20
Max. Addendum on wheel [
CA L =R A2 =
I —— 2sing |
| G 6 ) U 1
, 1+ L) -1
wmax | PR RN 2|S|n 20 |
18\18 ) I
=11.5mm

Max. Addendum on pinion

SA =r -1
p max L J
~A  =sol 8t 226 1|
pmax | |
=27.34mm

Path of contact when interference is just avoided ....

= Max. path of approach + Max. path of recess

= rsind +Rsin¢
= 80sin20 + 144sin20
=27.36 +49.25

=76.6 mm

Velocity of sliding ononesideof approach



w,="_  =28.8rad/sec
i 60

—(0+0)

. Pathof approach 28.8

P

e
I

( 21x275 \|
| , |
| —  =16rad/sec |
L & 18-G )

= (28.8 +16)x27.36

=1225.72mm/ sec

Velocity of sliding on side of path of recess
= (cop + g )Path of recess
=(28.8+16)x49.25
=2206 mm/ sec

Example 5.14: A pinion of 20 involute teeth and 125 mm pitch circle diameter drives a

rack. The addendum of both pinion and rack is 6.25 mm. What is the least pressure angle
which can be used to avoid interference? With this pressure angle, find the length of the arc
of contact and the minimum number of teeth in contact at a time.

Solution:

Given data Find:
T =20 1.Least pressure angle to avoid interference =7
d = 125mm 2.Length of arc of contact ="
r =0OP =62.5mm 3.Min.no. of teethin contact =?

Addendum forrack / pinion, LH=6.25mm

Pitch line (rack)

Least pressure angle to avoid interference



Let @ = Least pressure angle to avoid interference.

We know that for no interference, rack addendum,

From fig..... LH=PLsin¢
=rsindx sind
=rsin? ¢

.'.sinzcl):w:@
r 625

¢ =(18.4349)

Length of arc of contact

Now, KL =+/OK2 —OL2

= {J(OP+ 6.25)2 ~(rcos ¢)*

= \/(62.5 +6.25)? —(62.5%c0518.439 )?
=34.8mm

KL 34.8
Length of Arc of Contact = = =36.68 mm

cosd¢ €0s18.439°

Min. No. of teeth in contact

. . Length of arc of contact
Min.no. of teethin contact = g

_ Lengthof aI::: of contact
Tm

_ 36.68

1964

=1.87

=2

Example 5.15: In a spiral gear drive connecting two shafts, the approximate center distance
is 400 mm and the speed ratio = 3. The angle between the two shafts is 50° and the normal
pitch is 18 mm. The spiral angles for the driving and driven wheels are equal.

Find : 1. Number of teeth on each wheel,

2. Exact center distance, and

3. Efficiency of the drive, if friction angle = 6°.

4. Maximum efficiency.

Solution:



Given data:

T
L=400mm 0=50- G=_2=3
T,
6=6 Py=18 mm
1. No. of teeth on wheel:
Pl 1 G |
L="—] -
2n |coson  cosan J
~a00="n T, 215G
27 CcosOl1
18- T 1+3 |'-'°‘19:=°‘(3L iy )
400 = 1x | 1 2 |
2n cos25° | -50=201 |
K| a1=25" | )
o T1=31.6410 32
2T =3T1 =96

2. Exact center distance (L):

p.Tl 1 G |
L: N 1 [ S
21 | cosa cosoch
PTl1+6
N

1

21 ||cosa, || (o =0)
_18:32[ 1+3 |

27 LcosZS“J
=404.600 mm

3. Efficiency of drive:

1’]:

cos(a, +¢)xcosay,
cos(a, —¢)xcosa,

:cos=a1+¢; (o =a)
1 T 2
_ cos(25+6)

B cos(25-6)
=90.655%

4. Maximum efficiency:



no- cos(0+¢)+1
max  cos(0—¢)+1
_cos(50+6) +1
~ cos(50 - 6) +1
=90.685%

Example 5.16: A drive on a machine tool is to be made by two spiral gear wheels, the spirals
of which are of the same hand and has normal pitch of 12.5 mm. The wheels are of equal
diameter and the center distance between the axes of the shafts is approximately 134 mm.
The angle between the shafts is 80° and the speed ratio 1.25.
Determine : 1. the spiral angle of each wheel,

2. The number of teeth on each wheel,

3. The efficiency of the drive, if the friction angle is 6°, and

4. The maximum efficiency.
Solution:

Given data:

Py=12.5mm
L=134 mm
G =1.25

0= 80"

1. Spiral angle of each wheel

Weknow that........
. d, T,Cosau
d;, T,Cosaz
.. T,Cosa; =T,Cosau (dy=d,)
T
~.Cosair = 1.25Cosa; (- =2=G=1.25)
2
~.Cosa; =1.25 Cos(0 — o) (a1 +oz=0)

.Cosai; =1.25 Cos(80 — 1)
..Cosoiy = 1.25(Cos80 -Cosa + Sin80 -Sinaus )
(+ Cos(A-B) = CosA -CosB + SinA -SinB)



By solving........

tano; =0.636
S0 =32.46°
and o, =80 —32.46°=47.54"°

2. No. of teeth on wheel:

_d;+d,

) 2
134 = 2d,

2
cd =134 mm

d
Let pu =%

1

d1 :dz)
d1 Pc1 'T1
T
P
d 1: N % T
cosay T
T, = d, -cosau -
Py
= 134 xcos32.24x 1t
o 12.5

. T1 =28.4 [130nos.

T
Now, G= _t=125 = -1 _30

T,

3. Efficiency of drive:

2 G 1.25
T, =24 nos.

cos(ay + ¢)xcos oy

’r]:

cos(a1 — ¢)xcos oz
_ €0s(47.24 + 6)xc0s32.46

~ cos(32.46 — 6)xcos 47.24

=83%

4. Maximum efficiency:

cos(6+¢)+1
cos(6+¢)+1

n
max  cos(0 - ¢) +1

_cos!80+6[+1

~ cos(80-6) +1

=83.8%



Example 5.17: Find the minimum no. of teeth on gear wheel and the arc of contact(in term
of module) to avoid the interference in the following cases:

I. The gear ratio is unity

II. The gear ratio is 3

[ll. Pinion gear with a rack
Addendum of the teeth is 0.84 module and the power component is 0.95 times the normal
thrust.
Solution:

Here A,=0.84
Cos$p=0.95= $=18.19"
~.sing = 0.3122

I. Gear ratio is unity

e Let min. no of teeth on gear wheel T

.'.T=|* ZAW
(1 ), |
| 1+ =42 sin2g —1]
Vv ele l
~ 24, -G
| = |
L\/G +(1+2G)sin’ g G|
— 2x 0.84 x1 -
L\/l2 +(1+2)(0.31232 ~ 1 |
=12.73
- T =13 teeth
.t =13 teeth

e Length of arc of contact:

L.P.C:(\/RAZ —(Reosg)’ —Rsin¢)+( (r,f ~(rcosg)’ —rsinﬂ)

m-t m-13
| wr=—=__ _65m
N | A2 2
\Ilr‘—(rcos ¢)
=2 VA —rsing ‘ r =r+addendum {
=6.5m+0.84m
=7.34m

- Zm(\/(7-34)2 —(6.5%0.95)" _ (6.5x 0_3123))

=3.876m



3.876m _ 3.876m

cosg@ 0.95
..LLA.C=4.08m

Il. GearratioG=3

LA.C=

e Let min. no of teeth on gear wheel T
2A

w

o Y, ]
I|_\/1+G(G+2)sm (25—1|U

_ 24, G
|L\/GZ +(1+26G)sin? g — G]

~ 2x0.84x3

T 31+ (1+2x3)(03123) -3
L ' |

—45.11

. T=45teeth
S.t=15teeth

Length of arc of contact:

|_.P.C=(\/RA2 —(RCOSﬁ)2 —Rsin¢)+( rA2 —(rcos¢)2 —rsin¢) ..................

\

( m-t m-15

r= =7.5m

| |
r 4 add%ndum

i —7.5m+0.84m I

| |

R= = =22.5m
2 2
R, =R+addendum

| —22.5m+0.84m
=23.34m



putting all values in equation (1)

- (\/(23.34m)2 —(22.5mx 0.95)2 _22_5m><o,3122)+(\/(8.34m)2 —(7.5m><0.95)2 —7.5mx0.3122

=4.343m

4.343m _ 3.876m

cosg 0.95
.. L.LA.C=4.57m

LA.C=

lll. Pinion gear with a rack

e Min. no. of teeth on pinion t

_2Ar _ _2x0.84
sin¢  (0.3123)2

~t=17.23

S1=18

e Length of arc of contact:

LP.C= (\/R (Reos g)’ Rsin¢)+( fAZ—(fcosﬂ)z—rsinﬁ)

3 z(drA2 —(rcos #)° —rsinﬂ) (.assume rack andpinion same dimension)

( mt 18m \

f = =—7"=
( ) |- ) ) 9m

\/(9.84)‘ —(9mx0.95) |

-9mx0.3123 r =r+addendum

=9m+0.84m
=9.84m
\
=4.12m
LAC= 4.12m _ 4.12m
Ccos g 0.95

~.LAC=4.337m
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GEAR TRAIN
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6.1

6.2

Introduction
Definition

When two or more gears are made to mesh with each other to transmit power from
one shaft to another. Such a combination is called gear train or train of toothed
wheels.

The nature of the train used depends upon the velocity ratio required and the
relative position of the axes of shafts. A gear train may consist of spur, bevel or spiral
gears.

Types of Gear Trains

1. Simple gear train

2. Compound gear train

3. Reverted gear train

4. Epicyclic gear train

5. Compound epicyclic gear train

6.2.1 Simple gear train.

When there is only one gear on each shaft, as shown in Fig. , it is known as simple
gear train. The gears are represented by their pitch circles.

When the distance between the two shafts is small, the two gears 1 and 2 are made
to mesh with each other to transmit motion from one shaft to the other, as shown in
Fig.

Since the gear 1 drives the gear 2, therefore gear 1 is called the driver and the gear 2
is called the driven or follower. It may be noted that the motion of the driven gear is
opposite to the motion of driving gear.

Driven or

Drive Driven or ; Driver follower
1 follower —

Fig.6.2.1 Simple gear train



Let
N1 =Speedofdriver rpm
N, =Speedofintermediatewheel rpm
N3 =Speedof follower rpm
T1 =Number of teethon driver
T2 = Number of teethonintermediatewheel
T3 =Number of teethonfollower

Since the driving gear 1 is in mesh with the intermediate gear 2, therefore speed ratio
for these two gears is

N,
N,
Similarly, as the intermediate gear 2 is in mesh with the driven gear 3, therefore speed

L (1)
T

ratio for these two gears is

N,
N5
The speed ratio of the gear train as shown in Fig. (a) Is obtained by multiplying the

L (2)
T,

equations (1) and (2).

&x N_Z: Tz_x T3_

N, Ny T, T,
N _Tq
N; T,

Sometimes, the distance between the two gears is large. The motion from one gear to
another, in such a case, may be transmitted by either of the following two methods:

1. By providing the large sized gear, or
e Alittle consideration will show that this method (i.e. providing large sized
gears) is very inconvenient and uneconomical method.

2. By providing one or more intermediate gears.
e This method (i.e. providing one or more intermediate gear) is very
convenient and economical.

It may be noted that when the number of intermediate gears are odd, the motion of
both the gears (i.e. driver and driven or follower) is like as shown in Fig. (a).

If the numbers of intermediate gears are even, the motion of the driven or follower will
be in the opposite direction of the driver as shown in Fig (b).



speed ratio (or velocity ratio) of gear train is the ratio of the speed of the driver to the
speed of the driven or follower and ratio of speeds of any pair of gears in mesh is the
inverse of their number of teeth.

N
Speedratio= _* = _2

N, T,

Train value of the gear train is the ratio of the speed of the driven or follower to the

speed of the driver.
T

- NZ
Trainvalue= _* = _*

N, T,

1

6.2.2 Compound Gear Train

— When there is more than one gear on a shaft, as shown in Fig., it is called a
compound train of gear.

— The idle gears, in a simple train of gears do not affect the speed ratio of the system.
But these gears are useful in bridging over the space between the driver and the
driven.

— But whenever the distance between the driver and the driven or follower has to be
bridged over by intermediate gears and at the same time a great (or much less)
speed ratio is required, then the advantage of intermediate gears is intensified by
providing compound gears on intermediate shafts.

— In this case, each intermediate shaft has two gears rigidly fixed to it so that they may
have the same speed. One of these two gears meshes with the driver and the other
with the driven or follower attached to the next shaft as shown in Fig.

Driver —\ Compound

oy
-

i
L i

ST TN

[0

|
it

Fig. 6.2.2 compound gear train




In a compound train of gears, as shown in Fig., the gear 1 is the driving gear mounted
on shaft A; gears 2 and 3 are compound gears which are mounted on shaft B. The
gears 4 and 5 are also compound gears which are mounted on shaft C and the gear 6
is the driven gear mounted on shaft D.

Let
N1 = Speed of driving gear 1,
T1 = Number of teeth on driving gear 1,
N2 ,N3 ..., N6 = Speed of respective gears in r.p.m., and
T2 ,T3..., T6 = Number of teeth on respective gears.

Since gear 1 is in mesh with gear 2, therefore its speed ratio is

N,
N,

=
=

Similarly, for gears 3 and 4, speed ratio is

N,
N,

A
S

And for gears 5 and 6, speed ratio is
Ns_Te
N——T— ......... (3)
6 5

The speed ratio of compound gear train is obtained by multiplying the equations (1),
(2) and (3),

N No Ns_Toy Tay Ts
N, N, N T, T3 T,

The advantage of a compound train over a simple gear train is that a much larger
speed reduction from the first shaft to the last shaft can be obtained with small
gears.

If a simple gear train is used to give a large speed reduction, the last gear has to be
very large.

Usually for a speed reduction in excess of 7 to 1, a simple train is not used and a
compound train or worm gearing is employed.



6.2.3 Reverted Gear Train

— When the axes of the first gear (i.e. first driver) and the last gear (i.e. last driven or
follower) are co-axial, then the gear train is known as reverted gear train.

— Gear 1 (i.e. first driver) drives the gear 2 (i.e. first driven or follower) in the opposite
direction. Since the gears 2 and 3 are mounted on the same shaft, therefore they
form a compound gear and the gear 3 will rotate in the same direction as that of
gear 2. The gear 3 (which is now the second driver) drives the gear 4 (i.e. the last
driven or follower) in the same direction as that of gear 1. Thus we see that in a
reverted gear train, the motion of the first gear and the last gear is like.

Let
T1 = Number of teeth on gear 1,

rl
N1 = Speed of gear 1Linr.p.m.

Pitch circle radius of gear 1, and

Similarly,

T2, T3, T4 = Number of teeth on respective gears,
r2, r3, rd = Pitch circle radii of respective gears, and
N2, N3, N4 = Speed of respective gears in r.p.m.

Compound
gear
T Ty -
4 - X —2\
I,r/ _,1 xlll_." “_—"‘—\-\ IW

1

|
|
| |
| |
Co-axial f}éﬁ !
|
|

shafts
3

\H
i q

Fig. 6.2.3 Reverted gear train

— Since the distance between the centers of the shafts of gears 1 and 2 as well as gears

3 and 4 is same, therefore

r+r,=r; +r,



Also, the circular pitch or module of all the gears is assumed to be same; therefore
number of teeth on each gear is directly proportional to its circumference or radius.

T, +T,=T,+T,

Product of number of teeth on drivens

Speedratio = ;
Product of number of teeth on drivers
N, T,xT,
N, T,xT;

Application

The reverted gear trains are used in automotive transmissions, lathe back gears,
industrial speed reducers, and in clocks (where the minute and hour hand shafts are
co-axial).

6.2.4 Epicyclic Gear Train

In an epicyclic gear train, the axes of the shafts, over which the gears are mounted,
may move relative to a fixed axis. A simple epicyclic gear train is shown in Fig. where
a gear A and the arm C have a common axis at 01 about which they can rotate. The
gear B meshes with gear A and has its axis on the arm at 02, about which the gear B
can rotate.

If the arm is fixed, the gear train is simple and gear A can drive gear B or vice- versa,
but if gear A is fixed and the arm is rotated about the axis of gear A (i.e. 01), then the
gear B is forced to rotate upon and around gear A. Such a motion is called epicyclic
and the gear trains arranged in such a manner that one or more of their members
move upon and around another member is known as epicyclic gear trains (epi.
means upon and cyclic means around). The epicyclic gear trains may be simple or
compound.

Arm C
| B
A_ — yd ™~
;/ [ l,-’" !
-0 -T—-0sFF |
I. ! N\ 1 2 E |
'1_\\ : {_: ,.r" | |
p .

Fig. 6.2.4 Epicyclic gear train



Sr. No Condition of motion Revolution of element
B Arm C Gear A Gear B
. T
1 Arm f|xe_, gear A rotate's +1 0 +1 —_ﬁ
revolution(anticlockwise)
. IA
5 Arm fixed gear A ro’Fates 0 X -x_"
through + x revolutions Ts
3 Add + y revolutions to all Ty Ty Ty
elements
TA
4 Total motion +y X+y y-X—
Ts
Application

The epicyclic gear trains are useful for transmitting high velocity ratios with gears of
moderate size in a comparatively lesser space. The epicyclic gear trains are used in
the back gear of lathe, differential gears of the automobiles, hoists, pulley blocks,
wrist watches etc.

6.2.5 Compound Epicyclic Gear Train—Sun and Planet Gear

A compound epicyclic gear train is shown in Fig. It consists of two co-axial shafts S1
and S2, an annulus gear A which is fixed, the compound gear (or planet gear) B-C,
the sun gear D and the arm H. The annulus gear has internal teeth and the
compound gear is carried by the arm and revolves freely on a pin of the arm H. The
sun gear is co-axial with the annulus gear and the arm but independent of them.

The annulus gear A meshes with the gear B and the sun gear D meshes with the gear
C. It may be noted that when the annulus gear is fixed, the sun gear provides the
drive and when the sun gear is fixed, the annulus gear provides the drive. In both
cases, the arm acts as a follower.

Annulus
Compound gear (A)
gear,
NN
|\ N A by
N il g
8 | il { | ~ <—C
Arm(H)‘bl % Ns ; [
PN m o | Jon
S NS S, ‘ “ Sl
2%, | \ S4 ‘
N i
N
N N
N 7N
Sungear(D) NS\

Fig. 6.2.5 Compound epicyclic gear train.




Note: The gear at the center is called the sun gear and the gears whose axes move are
called planet gears.

Let Ta, Ts, Tc, and Tp be the teeth and Na, N, Nc and Np be the speeds for the gears A, B,
C and D respectively. A little consideration will show that when the arm is fixed and the

sun gear D is turned anticlockwise, then the compound gear B-C and the annulus gear A
will rotate in the clockwise direction.

The motion of rotations of the various elements is shown in the table below.

Table of motions

Revolution of motion
S Condition of motion Compound
No. Arm Gear D P Gear A
Gear (B-C)
Arm fixe, gear D rotates T, T T
-T LI I
1 +1 0 +1 c X
. . . T Ta
revolution(anticlockwise)
) Arm fixed gear D rotates 0 x X0 _xT_Dx E
through + x revolutions Te T. T,
3 Add + y revolutions to all N N N N
elements y y y y
TD TD TB
4 Total motion +y X+y y=X— y=X_x_—
Tc Tc Ty




EXAMPLES

Example 6.1. The gearing of a machine tool is shown in Fig.2.1. The motor shaft is
connected to gear A and rotates at 975 rpm. The gear wheels B, C, D and E are fixed to
parallel shafts rotating together. The final gear F is fixed on the output shaft. What is the
speed of gear F? The number of teeth on each gear is as given below:

Gear A B C D E F
No. of teeth 20 50 25 75 26 65
|| | |
" A [ \ {;+_ # ]I'.‘.-'I -.E_+ N
A o S }Q #
B \~-...______. _
D F
Fig. 6.1
Solution:
Given data
T,=20 N;="?
Tz =50
T.=25
TD :75
TE :26
T, =65
N,=975 rpm

Ne_Tay Te, e
Na Tg Tp T

. Ne _20 20 26
o =— X7 X
975 50 75 65

S.Ne=52 rpm




Example 6.2 In an epicyclic gear train, an arm carries two gears A and B having 36 and 45
teeth respectively. If the arm rotates at 150 rpm in the anticlockwise direction about the
center of the gear A which is fixed, determine the speed of gear B. If the gear A instead of
being fixed makes 300 rpm in the clockwise direction, what will be the speed of gear B?

. — "\\l‘ ) &
~_
Fig.6.2
Solution :
Given data Find
T,=36 Gear Afixed >Ny =7
T, =45 N, =—-300(Clockwise) =Ny =7
N.=150(Anticlockwise)
S N Conditi £ moti Revolution of element
r. No. ondition of motion Arm C Gear A Gear B
. T
1 Arm flxg, gear A rotate.s +1 0 +1 _l:
revolution(anticlockwise)
. IA
5 Arm fixed gear A ro'Fates 0 X -x_ "
through + x revolutions Ts
3 Add + y revolutions to all Ty Y Y
elements
TA
4 Total motion +y X+y ¥ XT_
B

1. Speed of gear B (Ng) when gear A is fixed
Here, gear A fixed

=>x+y=0
=>x+150=0
=>x=-150




A

Speed of gear B (N,) =Y ~X__
Tg

36
=y (150>
45
|: +270rpm(Anticlockwise) |

2. Speed of gear B (Ng) when gear Na =-300 (Clockwise)

Here given
x+y=-300
.. x+150=-300
S.Xx=—-450 rpm
Speed of gear B (Nsg)
T
Ts
=150 —(—450) 36

45
|= +510 rpm(Anticlockwise) |

Example 6.3 In a reverted epicyclic gear train, the arm A carries two gears B and C and a
compound gear D - E. The gear B meshes with gear E and the gear C meshes with gear D.
The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed
and direction of gear C when gear B is fixed and the arm A makes 100 rpm clockwise.




Solution Given data find

T, =75 GearBfixed =>N.="?
TC:3O NA:—].OO :>NC:?
To,=90

N, =—100(Clockwise)

Let dc +dp, =d; +d; (re+rp =rg +rg)
..30+90=75+T;

~T.=45
Sr. Condition of motion Revolution of element
No. Arm C Gear A Gear B Gear C
Arm fixe, gear A rotates F D
1 +1 0 +1 i —lc
revolution(anticlockwise)
5 Arm fixed gear A rotates 0 x —X E —X B
through + x revolutions Te Te
3 Add + y revolutions to all +y +y +y +y
elements
—-X I E —X I D
4 Total motion +y X+y y—X— y=X_—
Ts Tc
. . TE
GearBisfixed=>y—x -=0
Ts
4
:>—100—x_5 =0
75
=x=-166.67
TD
Speedof gear C(N )=y—x
c _
Tc
90
=-100—(—-166.67)x —
30

=+400 rpm(Anti clockwise)




Sr. Condition of motion Revolution of element
No. ondition ot motio Arm C Gear A Gear B Gear C
Arm fixe, gear A rotates Is Ts To
1 +1 0 +1 4B +T—>< T
revolution(anticlockwise) S
) Arm fixed gear A rotates 0 X XE +x£ ><|_D
through + x revolutions Te Te Tc
3 Add + y revolutions to all +y +y +y +y
elements
T I N s To
4 Total motion +y X+y y=X_— yrX_—x—
Te Te Tc
From fig

(re+rp =rg +re)

"'TC+TD :TB +TE
S Te=90+30-75

- T.=45
When gear Bis fixed

SXx+y=0

. X+(~100)=0

. x=100

TB
N, =Y+X X

Now

Ty

Tc

75 90

=-100+100x — x

45 30

Nc = 400 rpm (Anticlockwise) |

Example 6.4 An epicyclic gear consists of three gears A, B and C as shown in Fig. The gear A

has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A and

C and is carried on an arm EF which rotates about the centre of A at 18 rpm. If the gear A
is fixed, determine the speed of gears B and C.

A




Solution:

Tz =72 (Internal)
T.=32 (External)
ArmEF=18rpm

From the geometry of fig.

Gear Afixed =>N; =7

=N, =7

ry=rc+2rg
STa=To+ 2T,
~Tg=20
Sr. Condition of motion Revolution of element
No. Arm C Gear A Gear B Gear C
Arm fixe, gear A rotates :FC T T T
1 +1 0 +1 TE —T—Cx % - ;—
revolution(anticlockwise) B A A
) Arm fixed gear A rotates 0 x —X I_C —X I_C
through + x revolutions Ts Ta
3 Add + y revolutions to all N N N N
elements y y y y
—X I C —X IC
4 Total motion y X+y y=x_— y=Xx_—
Ts Ta
1. Speed of gear C(N¢)
. . TC
GearAisfixed=>y—-x _“=0
Ta
32
=-18—-x— =0
72
= x=-40.5
Speedof gear C(N¢)=x+y
=40.5+18

= 58.5 rpm(inthedirectionof arm)

2. Speed of gear B (Ng)

T
SpeedofgearB=y—x _©
Ts

32

=-18-40.5x—

=-46.8rpm

20

=46.8 rpm(intheopposite direction ofarm) |




Example 6.5 Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted on
shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and
gears with C and E has 35 teeth and gears with an internal gear G. The gear G is fixed and
is concentric with the shaft axis. The compound gear D-E is mounted on a pin which
projects from an arm keyed to the shaft B. Sketch the arrangement and find the number
of teeth on internal gear G assuming that all gears have the same module. If the shaft A
rotates at 110 rpm, find the speed of shaft B.

~Internal gear
Compound — et G
gear NN G -
1IN e N
TR ae «—D
\ -
AN \aC
\ S
Fig 6.5
Solution:
T.=50 No.of teethon internal gear =?
T,=20 Speed ofshaft B="?
Te=35
N. =110 (Rotationofshaft)
From the geometry of fig.
Go_dc, do, de
2 2 2 2

Sdg=dc+dp +de

"'TG:TC+TD+TE

S Teg=50+20+35

~.T¢=105



S Revolution of element
' Condition of motion Gear C Compound
No.
° AMC 1 (ShaftA) | Gear (D-E) | TG
Arm fixe, gear A rotates _E T T
1 +1 0 +1 T—X i
revolution(anticlockwise) b ¢
) Arm fixed gear A rotates 0 +x —X e —X I_C xI_E
through + x revolutions To To Te
3 Add + y revolutions to all N N N N
elements ¥ ¥ y y
T T Te
4 Total motion y X+y y=X_— X—X—
To To Te
Speed of shaft B
Here given gear G is fixed
.'.y—xT_Cx Ti:O
T, Tg
50 35
20 105
. 3
SYy=xx—=0 (1)
6
Also given gear Cis rigidly mounted on shaft A
Sx+y=110 --+(2)
Solving eq. (1) & (2)
x =60
y=50
|Speed of shaft B = Speed of arm = +y = 50 rpm

Example 6.6: In an epicyclic gear train, as shown in Fig.13.33, the number of teeth on
wheels A, B and C are 48, 24 and 50 respectively. If the arm rotates at 400 rpm, clockwise,

Find: 1. Speed of wheel C when A is fixed, and
2. Speed of wheel A when Ciis fixed

\ _."‘

==

—_———

/ N4 :_»Arm

- 5
r — \

Fig. 6.6




Solution:

T,=48 Gear Afixed=>N, =7
T, =24 GearCfixed =N, =7
T. =50 y =—400 rpm(Arm rotationclockwise)
Sr. Condition of motion Revolution of element
No. Arm C Gear A Gear B Gear C
Arm fixe, gear A rotates _:|:A ( Ta \( Te) Ta
1 +1 0 +1 B L__JX L‘ _J—+ —
revolution(anticlockwise) TB Tc Tc
) Arm fixed gear A rotates 0 X —xi +x£
through + x revolutions Ts Tc
3 Add + y revolutions to all Ty Ty Ty Ty
elements
- X ' + X s
4 Total motion y X+y y=X_— y+xX—
Ts Tc

1. Speed of wheel C when A is fixed

When A is fixed

=>x+y=0
=>x—-400=0
=>x=0
N =y+x "
C
Tc
:—400+400xﬁ
50
=-16 rpm

N.=16 rpm(Clockwise direction) |

2. Speed wheel A when Cis fixed
When C s fixed

T
Sy+x =0
Tc

.'.—400+X@ =0
50
S.Xx=416.67




Np=x+y
=416.67-400

N, =16.67 (Anticlockwise)
Example 6.7: An epicyclic gear train, as shown in Fig. 13.37, has a sun wheel S of 30 teeth
and two planet wheels P-P of 50 teeth. The planet wheels mesh with the internal teeth of
a fixed annulus A. The driving shaft carrying the sunwheel transmits 4 kW at 300 rpm. The
driven shaft is connected to an arm which carries the planet wheels. Determine the speed
of the driven shaft and the torque transmitted, if the overall efficiency is 95%.

Solution
T,=30 T,=50T,=130
Ns=300rpm P=4 KW

From the geometry of fig.

rA:2rp+rS
"'TA:2TP+TS
=2x50+30
=130
Sr. Condition of motion Revolution of element
No. Arm C Gear A Gear B Gear C
Arm fixe, gear A rotates S (1) (To) T
1 +1 0 1 -1 L__SJX L_PJ:-'-_S
revolution(anticlockwise) Tp TA TA
5 Arm fixed gear A rotates 0 X —xl_S —xl_S
through + x revolutions Tp Ta
3 Add + y revolutions to all Ty +y Ty +y
elements
—X IS —X IS
4 Total motion y X+y y y
Tr T




Here,
N =300rpm
SX+y=300 el (2)

Also, Annular gear A is fixed

Solving equation eq. (1) & (2)

x=243.75

y =56.25
Speed of Arm = Speed of driven shaft =y =56.25 rpm

Here,P=4 KW & n= 95%

P
© ) = —out
..M Pin

Pout = nXPin
:ﬂ x4
100
=3.8 KW

Also,

27NT
p ==L

out 60
. 3.8x10° = 21tx56.30T
60

.. T=644.5 N-m



Example 6.8 An epicyclic gear train is shown In fig. Find out the rpm of pinion D if arm A
rotate at 60 rpm in anticlockwise direction. No of teeth on wheels are given below.

’w> D(40)

(
< \ C(60)
1/

,: \| B(120)

h
i

\

Fig.6.8
Solution:
Tp =40 Np=?
T.=60
T,=120
N, = +60 rpm(Anticlockwise)
Sr. . . Revolution of element
Condition of motion
No. Arm C Gear B Gear C Gear D
Arm fixe, gear A rotates i Ty T, T, T,
1 +1 0 +1 Tc Bx C=4 '8
. . . Tc To To
revolution(anticlockwise)
. | |
Arm fixed gear A rotates _x B B
2 8 . 0 +X X— X
through + x revolutions Tc To
Add + y revolutions to all
3 Y +y +y +y +y
elements
- X e +X e
4 Total motion y X+y y=X_— y+xX_—
Tc To

From fig. Gear B is fixed

SX+y=0

S X+60=0

S x=-60
Now motion of gear D

(.rpmofarmA =60=Yy)

T
=y+x_%
Ty

=60—60><w

40
=—120rpm

D rotates 120 rpm in clockwise direction.

Note: By fixing any gear C OR B this problem can be solved




Example 6.9 An epicyclic gear train for an electric motor is shown in Fig. The wheel S has 15
teeth and is fixed to the motor shaft rotating at 1450 rpm. The planet P has 45 teeth, gears
with fixed annulus A and rotates on a spindle carried by an arm which is fixed to the output
shaft. The planet P also gears with the sun wheel S. Find the speed of the output shaft. If the
motor is transmitting 1.5 kW, find the torque required to fix the annulus A.

Solution:
Fig. 6.9
T,=15 Speedof outputshaft =?
T, =45 Torque="7?
From fig.
ry=r+2rp
S Ta=Ts+2T,
. T,=105
Sr. . . Revolution of element
Condition of motion -
No. Spindle Gear S Gear P Gear A
Sector/Spindle fixed,
+1 _1s T. T T
1 gear S rotates 0 +1 £:_ — Sx P=_ 'S
revolution T Ta Ta
(anticlockwise)
Spindle fixed gear S T
_x S —X TS
2 rotates through + x 0 +X - -
] Te Ta
revolutions
Add + y revolutions to
3 / +y +y +y +y
all elements
—X IS —X IS
4 Total motion y X+y y=x_ y=x_
Tp Ta




Motor shaft is fixed with gear S

X4y =1450 (1)
And Annular A is fixed

SY=EX__ ceeeeene(2)

By solving equation (1) & (2)

x =1268.76

y =181.25
Speed of output shaft y =181.25 rpm

e Torque on sun wheel (S) (input torque)
_ 27NT;

60
T = Px 60

P

iz_(|§7ﬁb3 \| 60

135 27tx1450

\ )

=9.75N'm

e Torque on output shaft (with 100% mechanical efficiency)

P
T, = Px60
27N

_f2q02)) 60
135 ° 2mx181.25

\

=78.05 N-m
e Fixing torque

=To_Ti
=78.05-9.75
=68.3N-m

f
\

.+135HP 1KW

_2

2HP 1.35

KW

)
|

)



Example 6.10: If wheel D of gear train as shown in fig. is fixed and the arm A makes 140

revolutions in a clockwise direction. Find the speed and direction of rotation of B & E. C is

a compound wheel.

C|:35'

E|:3D

AN N

\ \(x //% |~§<\ /

Fig.6.10
Solution:
T,=30 T.=35 T,=19 T, =30
Sr. . . Revolution of element
Condition of motion -
No. Spindle | Gear S Gear P Gear A
Arm fixe, gear A rotates
. & i . . 20 J(35) [ 19)
* * 15 15 L 19 k 30
revolution(anticlockwise)
Arm fixed gear A rotates
2 & _ 0 X | -1.33x ~1.555x
through + x revolutions
Add + y revolutions to all
3 Y +y +y +y +y
elements
4 Total motion y X+y | y-1.33x y—1.555x
e When gear D is fixed
y+2.456x =0
.—140+2.456x =0 (.y =—140rpm given)
S.x=57
e SpeedofgearB
Ng=x+Yy
=457 -140
=-83rpm(Clockwise)

e SpeedofgearE

Ne=y—1.555x%

=-140-1.555(57)

=—228.63rpm(Clockwise)




Example 6.11: The epicyclic train as shown in fig. is composed of a fixed annular wheel A
having 150 teeth. Meshing with A is a wheel b which drives wheel D through an idle wheel
C,D being concentric with A. Wheel B and C are carried on an arm which revolve clockwise
at 100 rpm about the axis of A or D. If the wheels B and D are having 25 teeth and 40 teeth
respectively, Find the no. of teeth on C and speed and sense of rotation of C.

Y
2 \/‘///
4 %
/ {/
A
|"/ y'l
| | |
Il‘\ /," /
Fig. 6.11
Solution:
From the geometry of fig.
rA:2r3+2rC +rD
S Ta=2T+ 2T+ T,
..150=50+2T.+40
S T.=30
Sr. . . Revolution of element
Condition of motion
No. Arm Gear D Gear C Gear B Gear A
Arm fixe, gear D T T
D D
1 rotates +1 revolution 0 +1 T + s N Ty
(anticlockwise) Ta
) Arm flxid gear: D ; N T, . Ty » Ty
rotates through + x +X - . .
] & Tc Ts Ta
revolutions
Add + y revolutions
3 / +y +y +y +y +y
to all elements
_ I'o Io I'o
4 Total motion +y X+y y=x__ y+x__ y+x__
Tc Ts Ta




Now

Let

=-100—-375x 40

30
=-600rpm

Example 6.12: Fig. 13.24 shows a differential gear used in a motor car. The pinion A on the
propeller shaft has 12 teeth and gears with the crown gear B which has 60 teeth. The
shafts P and Q form the rear axles to which the road wheels are attached. If the propeller
shaft rotates at 1000 rpm and the road wheel attached to axle Q has a speed of 210 rpm.
while taking a turn, find the speed of road wheel attached to axle P.

Propeller
Shaft —»"] A
v/
B =
. Arm
Rear axle D

—%-—p 0t 5]

i Wheel -7
Wheel \‘*Spindk—;‘
F
Arm
Fig. 6.12
Solution:

T, =12
T, =60

Nq=Np=210rpm
N,=1000rpm



Let

Nax Ty =NgTg
AN =N x
B A TB
12
=1000x —
60
=200rpm
Sr. Condition of motion Revolution of element
No. Gear B Gear C Gear E Gear D
Gear B is fixed, gear C c
1 rotates +1 0 +1 +L -1
revolution(anticlockwise)
Gear B is fixed gear C T,
2 rotates through + x 0 +X X T_ —X
revolutions E
3 Add + y revolutions to all Ty +y Ty +y
elements
IC
4 Total motion +Yy X+y y+XT— y—X
E

Let here speed of gear Bis 200 rpm

N;=200=y
From table
Np=y—x=210
Sx=y—-210
..x=200-210
S x=—=10rpm
Let speed of road wheel attached to the axle P = Speed of gear C
=X+y
=-10+200
=180rpm

Example 6.13: Two bevel gears A and B (having 40 teeth and 30 teeth) are rigidly mounted
on two co-axial shafts X and Y. A bevel gear C (having 50 teeth) meshes with A and B and
rotates freely on one end of an arm. At the other end of the arm is welded a sleeve and
the sleeve is riding freely loose on the axes of the shafts X and Y. Sketch the arrangement.
If the shaft X rotates at 100 rpm. clockwise and arm rotates at 100 rpm. anticlockwise, find
the speed of shaft Y.




)

A\l

Fig. 6.13
Solution:
TA :40 Tc :50 TB:3O
Ny= N,=—100rpm(Clockwise)
Speedofarm=100rpm
Sr. . . Revolution of element
Condition of motion
No. Arm Gear A Gear C Gear B
Arm fixe, gear A rotates N T, T,
1 +1 0 +1 é%* Ts
revolution(anticlockwise) ¢
N [ I
Arm fixed gear A rotates A _x A
2 8 0 +X X _ X_
through + x revolutions Tc Ts
Add + y revolutions to all
3 Y +y +y +y +y
elements
L A X A
4 Total motion +y X+y yEX__ y=X_—
Tc Ts

Here speed of arm =y =+100 rpm (given)
Also given N,=N, =—100rpm
S Ny=x+y
..—100=x+100
S x=-200
Speed of shaft Y =N,

T
=y—-x_*

Ts
=100 +200x 49
30
=+366.7rpm(Anticlockwise)




Example 6.14. An epicyclic train of gears is arranged as shown in Fig. How many
revolutions does the arm, to which the pinions B and C are attached, make: 1. when A
makes one revolution clockwise and D makes half a revolution anticlockwise, and 2. when
A makes one revolution clockwise and D is stationary? The number of teeth on the gears A
and D are 40 and 90 respectively.

Solution:
A =40
T, =90
First of all, let us find the number of teeth on gear B and C (i.e. Tsand T¢). Let da, ds, dc, dp
be the pitch circle diameter of gears A, B, C, and D respectively. Therefore from the
geometry of fig, dy+dy +dc=d, or d,+2d;=d, L(dg=do)

Since the number of teeth are proportional to their pitch circle diameters, therefore,
Ty +2T=T, or 40+2T;=90

Tg =25, and T.=25 o Te=To)
or Revolutions of elements
No. Conditions of motion Arm Gear A Compound Gear D
Gear B-C
1 Arm fixe, gear A rotates 0 1 +£§ (JrE\ ( T_B\ N TL
-1 revolution(clockwise) B L TBJX ( T T,
) Arm fixed gear A rotates 0 _x +xi +xi
through - x revolutions Ts To
3 Add - y revolutions to all -y -y -y —y
elements
A TA
4 Total motion -y —X-Y X y X—=Yy
Ts Tc

1. Speed of arm when A makes 1 revolution clockwise and D makes half revolution

anticlockwise
Since the gear A makes 1 revolution clockwise, therefore from the fourth row of the

table, —Xx—-y=-1 or x+y=1 (1)



Also, the gear D makes half revolution anticlockwise, therefore

40 1
SXX T —
90 2
. 40x—90y =45

SX=2.25y =1.125 e, (2)

From equations (1) and (2),
x=1.04 and y=-0.04

Speedofarm = —y = —(—0.04) = +0.04

|:0.04 revoIution(AnticIockwise)|

Speed of arm when A makes 1 revolution clockwise and D is stationary
Since the gear A makes 1 revolution clockwise, therefore from the fourth row of the
table,

—-x-y=-1

Sx+y=1 ..(3)
Also the gear D is stationary, therefore

XX L y=0
D

40

SOXX y=0

90
~.40x—90y =0
5.Xx—2.25y=0 ...(4)
From equations (3) and (4),
..Speedof arm =—y =—-0.308

|.'.Speedofarm: 0.308revolution (Clockwise) |

Example 6.15. In an epicyclic gear train, the internal wheels A and B and compound
wheels C and D rotate independently about axis O. The wheels E and F rotate on pins fixed
to the arm G. E gears with A and C and F gears with B and D. All the wheels have the same
module and the number of teeth is: TC = 28; TD = 26; TE = TF = 18. 1. Sketch the
arrangement; 2. Find the number of teeth on A and B; 3. If the arm G makes 100 r.p.m.
clockwise and A is fixed, find the speed of B; and 4. If the arm G makes 100 r.p.m.
clockwise and wheel A makes 10 r.p.m. counter clockwise; find the speed of Wheel B.
Solution:

Given: T.=28;T,=26;T, =T, =18



1. Sketch the arrangement
The arrangement is shown in Fig.

/A
- V\E
v A‘_\D
IB [ (G |+ | .
F
| ° _4./v
Fig. 6.15

2. Number of teeth on wheels A and B
TA = Number of teeth on wheel A, and
TB = Number of teeth on wheel B.
If da, ds, dc, do, de and dr are the pitch circle diameters of wheels A, B, C, D, Eand F

respectively, then from the geometry of Fig.
dy=dc+2d;
And dg=dp+2d;
Since the number of teeth are proportional to their pitch circle diameters, for the
same module, therefore
To=Tc+2T, =28+2=64
And Ty=T, +2T; =26+2=62
3. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A is fixed
First of all, the table of motions is drawn as given below:

Revolutions of elements
Conditions of motion Arm Wheel Wheel Compound Wheel E Wheel B
G A E wheel C-D
Ta_ Te Ta_To Tk
. ——Lx = X =X —
Arm fixe, A r(?tates +£é Te Tc T To Tc T Ts
+1 revolution 0 +1 T +T—>< T_ T T
(Anti clockwise) = _* ¢ IF =+ Ax P
Te Tc Ts
. | | I I | |
Arm fixed A rotates 0 +x +x _* -x A +Xx A x P +Xx A x P
through + x revolutions Te Tc Te Tk Te Ts
Add +y revolutions to +y +y +y +y +y +y
all elements
; | I | | |
Total motion ty X+y XT5+y y—x & y+xx Ax_ 2 | +y+xx Ax_D
Te Tc Te Tr Tc Ts




Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table
y= -100
Also, the wheel A is fixed, therefore from the fourth row of the table,

x+y=0 or x=-y=100

T, T
Speedofwheel B=y+xx A x °
Te Ts
=-100+100><%><2—6
28 62

=-100+95.8r.p.m.=-4.2r.p.m

SpeedofwheelB=4.2r.p.m (Clockwise)|

4. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m.

counter clockwise

Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table

y=-100 (3)
Also the wheel A makes 10 r.p.m. counter clockwise, therefore from the fourth row of the
table,

x+y=10
S x=10-y
..x=10+100
S.x=110 ...(4)
..Speed of wheel B = +y +xx Tix Ti
T Te
:—100+110x&xé
28 62
=—100+1054r.p.m
=+5.4 r.p.m

..Speed of wheel B=5.4r.p.m (Anticlockwise)

Example 6.16. Fig. shows diagrammatically a compound epicyclic gear train. Wheels A, D
and E are free to rotate independently on spindle O, while B and C are compound and
rotate together on spindle P, on the end of arm OP. All the teeth on different wheels have
the same module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally. Find
the number of teeth on wheels D and E which are cut internally. If the wheel A is driven
clockwise at 1 r.p.s. while D is driven counter clockwise at 5 r.p.s., determine the
magnitude and direction of the angular velocities of arm OP and wheel E.



Fig. 6.16

Solution:
Given: T,=12; T;=30;T.=14; N, =1r.p.s.; N, =5r.p.s
Number of teeth on wheels D and E

Let Tp and Te be the number of teeth on wheels D and E respectively. Let da, ds, dc, dp and
de be the pitch circle diameters of wheels A, B, C, D and E respectively. From the geometry
of the figure,

de=d, . 2d, and dp=d¢ —(dg —d,)

Since the number of teeth are proportional to their pitch circle diameters for the same
module, therefore

Te =T, + 2T, T, =T _(TB _Tc)
~Te =12+2x30 ~To =72 —(30 - 14)

Magnitude and direction of angular velocities of arm OP and wheel

The table of motions is drawn as follows:

Revolutions of elements
S Condition of motion Wheel | Compound
No. Arm P Wheel D Wheel E
A wheel B-C
Arm fixe, gear A
A
. rotates 0 1 T coa T | L T Te  Ta
-1 Te Tb T Te Te
revolution(clockwise)
Arm fixed gear A i T, i T, y T i T,
2 rotates through - x 0 —X — — —
revolutions Te Te To Te
3 Add - y revolutions to -y -y -y —y —y
all elements
| y X—Y xTA y xTAxTC y xTA y
4 Total motion - —A— - - -
! ¥ ¥ o Fe




Since the wheel A makes 1 r.p.s. clockwise, therefore from the fourth row of the table,
—x-y=-1
SX+y=1 (1)

Also, the wheel D makes 5 r.p.s. counter clockwise, therefore

2.0.1x—y=5 (2)
From equations (1) and (2),
x = 5.45 and y=-4.45

Angular velocity of arm OP
=-y=—(—4.45)=4.45r.p.s

|= 4.45x2mt=27.964rad / sec (Anti clockwise) |
And angular velocity of wheel E

T
Te

12
= 5.45x == —(~4.45)
72

=5.36 r.p.s
= 5.36 x2m

=33.68 rad/sec (Anti clockwise) |

Example 6.17. Fig shows an epicyclic gear train known as Ferguson’s paradox. Gear A is
fixed to the frame and is, therefore, stationary. The arm B and gears C and D are free to
rotate on the shaft S. Gears A, C and D have 100, 101 and 99 teeth respectively. The planet
gear has 20 teeth. The pitch circle diameters of all are the same so that the planet gear P
meshes with all of them. Determine the revolutions of gears C and D for one revolution of

the arm B.




Solution:
Given:T,=100;T.=101;T,=99 ;T,=20

The table of motions is given below:

Sr. . . Revolutions of elements
Condition of motion
No. Arm B Gear A Gear C Gear D
Arm B fixe, gear A rotates N T, T, T. T,
1 +1 0 +1 Tc SX- ==
. . . Tc To To
revolution(anticlockwise)
. |
Arm B fixed gear A rotates A Ta
2 8 : 0 +X X P
through + x revolutions Tc To
Add + y revolutions to all
3 Y +y +y +y +y
elements
+ X ' + X "
4 Total motion +y X+y y+x_— y+X_—
Tc Tp

The arm B makes one revolution, therefore
y=1
Since the gear Ais fixed, therefore from the fourth row of the table,
x+y=0
SX=-y=-1

Let Nc and Np = Revolutions of gears C and D respectively.

From the fourth row of the table, the revolutions of gear C,

_ A
Nc—y+x Al

Tc
100
=1 -1x——

101

. 1
. 'NC =t

101

And the revolutions of gear D,

| >

N =y+x_*_,_ 100
P 99

!
lw)

AN =—
P 99

From above we see that for one revolution of the arm B, the gear C rotates through 1/101
Revolution in the same direction and the gear D rotates through 1/99 revolutions in the

opposite direction.

Example 6.18. Fig. shows an epicyclic gear train. Pinion A has 15 teeth and is rigidly fixed
to the motor shaft. The wheel B has 20 teeth and gears with A and also with the annular




fixed wheel E. Pinion C has 15 teeth and is integral with B (B, C being a compound gear
wheel). Gear C meshes with annular wheel D, which is keyed to the machine shaft. The
arm rotates about the same shaft on which A is fixed and carries the compound wheel B,

C. If the motor runs at 1000 r.p.m., find the speed of the machine shaft. Find the torque
exerted on the machine shaft, if the motor develops a torque of 100 N-m.

Solution:

Given:T,=15;T,=20;T.=15;N,=1000r.p.m.;
Torgue developed by motor (or pinion A) = 100 N-m

1. Speed of the machine shaft
The table of motions is given below:

Revolution of element
Sr. . . . Compoun
f P
No. Condition of motion Arm nion d wheel Wheel D Wheel E
A
D-C
Arm fixe, gear A rotates
g+1 TA TA Tc _Bx E.: - TA_
1 . . . 0 +1 ~Ts - X = Ts Te Te
revolution(anticlockwis Ts Tb
e)
Arm fixed gear A s T, y T, 8 Te y T,
2 rotates through + x 0 +X T_ T_ T_ T_
revolutions B 8 P :
3 Add + y revolutions to +y +y +y +y +y
all elements
T T

T, | Y=x "< ] T,
4 Total motion +y x+y | Y=X Te To y=x

Ts Te

First of all, let us find the number of teeth on wheels D and E. Let Tp and Tt be the number
of teeth on wheels D and E respectively. Let da, ds, dc, do and de be the pitch circle
diameters of wheels A, B, C, D and E respectively. From the geometry of the figure,

and

dp = dE'(dB'dc)




Since the number of teeth are proportional to their pitch circle diameters, therefore,
Te=Toa+2Ty=15+2x20=55
Tp=T¢—(Tg—T)=55—(20—-15)=50

We know that the speed of the motor or the speed of the pinion A is 1000 r.p.m.
Therefore

x+y=1000 (1)
Also, the annular wheel E is fixed, therefore

y-x_2=0
Te
Ly = xT_A
Te
15
LYy=X_
55
-y =0.273x ..(2)
From equations (1) and (2),
x=786 and y=214
..Speedofmachineshaft =Speedof wheel D
N =y—xTA « e
5 X
T Tp
:214—786x§x1—
20 50
=+37.15 r.p.m.

..Np=37.15 (Anticlockwise)

Torque exerted on the machine shaft
We know that

Torque developed by motor x Angular speed of motor
=Torque exerted on machine shaft xAngular speed of machine shaft
..100 xwa =Torque exerted on machine shaft xmp

.. Torque exerted on machine shaft =100 x ®,

(6V])>)
_100x "* =100 1200
N, 37.5

.. Torque exerted on machine shaft=2692 N-m

Example 6.19. An epicyclic gear train consists of a sun wheel S, a stationary internal gear E
and three identical planet wheels P carried on a star- shaped planet carrier C. The sizes of
different toothed wheels are such that the planet carrier C rotates at 1/5th of the speed of
the sun wheel S. The minimum number of teeth on any wheel is 16. The driving torque on



the sun wheel is 100 N-m. Determine: 1. Number of teeth on different wheels of the train,
and 2. torque necessary to keep the internal gear stationary.
Solution:

Given N, =—

5

Fig. 6.19

1. Number of teeth on different wheels

The arrangement of the epicyclic gear train is shown in Fig.. Let Ts and Te be the
number of teeth on the sun wheel S and the internal gear E respectively. The table of

motions is given below:

Revolutions of elements

Sr.
Conditions of motion Plant carrier | Sun wheel Planet
No. Internal Gear E
C S Wheel P
Planet carrier C fixed,
sun wheel S rotates —E _T_S TL: _ TS_
1 ] 0 +1 X
through + 1 revolution T Te Te
(anticlockwise)
Planet carrier C fixed, x T . T
2 sun wheel S rotates 0 +X T_ T_
through + x revolutions P :
Add + y revolutions to
3 Y +y +y +y +y
all elements
—X IS X IS
4 Total motion +Yy X+y y=X_— y=Xx_—
Tp Te

We know that when the sun wheel S makes 5 revolutions, the planet carrier C makes 1
revolution. Therefore from the fourth row of the table,

y =1, and

Sx=4

X+y=5




Since the gear E is stationary, therefore from the fourth row of the table,

y - x5 =0
Te
s 1- 4}2 0
Te
S Te=4Ts

Since the minimum number of teeth on any wheel is 16, therefore let us take the number of
teeth on sun wheel,

T,=16

S Te=4x16=64
Let ds, dp and dk be the pitch circle diameters of wheels S, P and E respectively. Now from
the geometry of Fig

ds+2dy,=d;

Assuming the module of all the gears to be same, the number of teeth are proportional to
their pitch circle diameters.
TA+H2T, =T,
..16+2T,=64

2. Torque necessary to keep the internal gear stationary
We know that
Torque on Sx Angular speed of S=Torque on Cx Angular speed of C

100 xws =Torque on Cxac

.. Torque on C =100 x 8
O‘)C

=100 x&
Nc
=100x5
.. Torque on C=500 N-m
.. Torque necessary to keep the internal gear stationary

=500-100
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7.1 Introduction

— A cam is a rotating machine element which gives reciprocating or oscillating
motion to another element known as follower.

— The cam and the follower have a line contact and constitute a higher pair. The
cams are usually rotated at uniform speed by a shaft, but the follower motion is
pre-determined and will be according to the shape of the cam. The cam and
follower is one of the simplest as well as one of the most important mechanisms
found in modern machinery today.

— The cams are widely used for operating the inlet and exhaust valves of internal
combustion engines, automatic attachment of machineries, paper cutting
machines, spinning and weaving textile machineries, feed mechanism of
automatic lathes etc.

7.2 Classification of Followers

— The followers may be classified as discussed below :

9 Knife edge
153 follower

Flat faced
rr/ follower
% : %

At

“\Cam
)
17
Lt
() Cam with knife (5) Cam with roller (&) Cam with flat
edge follower. follower. faced follower.
Spherical faced
T/ ollowss Offset follower — i
7~
/I Spherical faced % i //4
////// ! ‘///// follower | I
Cam i Cam
Cam
—] Offset
(d) Cam with spherical (e) Cam with spherical (f) Cam with offset
faced follower, faced follower. follower,

Fig. 7.1 classification of follower



7.2.1 According to surface in contact

722

Knife edge follower

When the contacting end of the follower has a sharp knife edge, it is
called a knife edge follower, as shown in Fig. 7.1 (a).

The sliding motion takes place between the contacting surfaces (i.e. the
knife edge and the cam surface). It is seldom used in practice because the
small area of contacting surface results in excessive wear. In knife edge
followers, a considerable side thrust exists between the follower and the
guide.

Roller follower

When the contacting end of the follower is a roller, it is called a roller
follower, as shown in Fig. 7.1 (b). Since the rolling motion takes place
between the contacting surfaces (i.e. the roller and the cam), therefore
the rate of wear is greatly reduced.

In roller followers also the side thrust exists between the follower and the
guide. The roller followers are extensively used where more space is
available such as in stationary gas and oil engines and aircraft engines.

Flat faced or mushroom follower

When the contacting end of the follower is a perfectly flat face, it is called
a flat-faced follower, as shown in Fig. 7.1 (c). It may be noted that the side
thrust between the follower and the guide is much reduced in case of flat
faced followers.

The only side thrust is due to friction between the contact surfaces of the
follower and the cam. The relative motion between these surfaces is
largely of sliding nature but wear may be reduced by off-setting the axis
of the follower, as shown in Fig. 7.1 (f) so that when the cam rotates, the
follower also rotates about its own axis.

The flat faced followers are generally used where space is limited such as
in cams which operate the valves of automobile engines.

Spherical faced follower

When the contacting end of the follower is of spherical shape, it is called
a spherical faced follower, as shown in Fig. 7.1 (d). It may be noted that
when a flat-faced follower is used in automobile engines, high surface
stresses are produced. In order to minimize these stresses, the flat end of
the follower is machined to a spherical shape.

According to the motion of follower

a Reciprocating or Translating Follower

o

When the follower reciprocates in guides as the cam rotates uniformly, it
is known as reciprocating or translating follower. The followers as shown
in Fig. 7.1 (a) to (d) are all reciprocating or translating followers.

b Oscillating or Rotating Follower

o

When the uniform rotary motion of the cam is converted into
predetermined oscillatory motion of the follower, it is called oscillating or
rotating follower. The follower, as shown in Fig 7.1 (e), is an oscillating or
rotating follower.



7.23 According to the path of motion of the follower

a Radial Follower

o When the motion of the follower is along an axis passing through the
centre of the cam, it is known as radial follower. The followers, as shown
in Fig. 7.1 (a) to (e), are all radial followers.

Off-set Follower

o When the motion of the follower is along an axis away from the axis of
the cam centre, it is called off-set follower. The follower, as shown in Fig.
7.1 (f), is an off-set follower.

7.3 Classification of cams

a Radial or Disc cam

o In radial cams, the follower reciprocates or oscillates in a direction
perpendicular to the cam axis. The cams as shown in Fig. 7.1 are all radial
cams.

b Cylindrical cam

o In cylindrical cams, the follower reciprocates or oscillates in a direction
parallel to the cam axis. The follower rides in a groove at its cylindrical
surface. A cylindrical grooved cam with a reciprocating and an oscillating
follower is shown in Fig. 7.2 (a) and (b) respectively.

| lFln . @ ( . E 2
R\ \ W 7 L~y é
¢ WA ) 2 *éi' )

(a) Cylindrical cam with reciprocating (B) Cylindrical cam with oscillating follower.,

follower,
Fig. 7.2 cylindrical cam

7.4 Terms used in radial cams

a Base circle

o ltis the smallest circle that can be drawn to the cam profile.

b Trace point

o It is a reference point on the follower and is used to generate the pitch
curve. In case of knife edge follower, the knife edge represents the trace
point and the pitch curve corresponds to the cam profile. In a roller
follower, the centre of the roller represents the trace point.

¢ Pressure angle

O It is the angle between the direction of the follower motion and a
normal to the pitch curve. This angle is very important in designing a
cam profile. If the pressure angle is too large, a reciprocating follower




will jam in its bearings.

Pitch point

o ltis a point on the pitch curve having the maximum pressure angle.
Pitch circle

o ltis a circle drawn from the centre of the cam through the pitch points.
Pitch curve

O It is the curve generated by the trace point as the follower moves
relative to the cam. For a knife edge follower, the pitch curve and the
cam profile are same whereas for a roller follower, they are separated
by the radius of the roller.

Prime circle

o It is the smallest circle that can be drawn from the centre of the cam
and tangent to the pitch curve. For a knife edge and a flat face follower,
the prime circle and the base circle are identical. For a roller follower,
the prime circle is larger than the base circle by the radius of the roller.

Lift or Stroke

o It is the maximum travel of the follower from its lowest position to the
topmost position.

Pressure angle

(Maximum)
Follower —
| ¥ _Pitch point Pressure
angle
Trace point

Fig. 7.3 terms used in radial cams



7.5 Motion of follower

— Thefollower, during its travel, may have one of the following motions:

a
b
c
d

Uniform velocity

Simple harmonic motion

Uniform acceleration and retardation
Cycloidal motion

7.6 Displacement, Velocity and Acceleration Diagrams when the

Follower Moves with Uniform Velocity

— The displacement, velocity and acceleration diagrams when a knife-edged
follower moves with uniform velocity are shown in Fig. 7.4 (a), (b) and (c)
respectively.

— The abscissa (base) represents the time (i.e. the number of seconds required for
the cam to complete one revolution) or it may represent the angular
displacement of the cam in degrees. The ordinate represents the displacement,
or velocity or acceleration of the follower.

— Since the follower moves with uniform velocity during its rise and return stroke,
therefore the slope of the displacement curves must be constant. In other words,
AB1 and C1D must be straight lines.

4 2
- 3 Bi C
@ B,1i —C\1 uE) ,r_‘1 J
L] { | \ . & /,/ § F N
SA g e AT B cil b E
Nise ¢:<DWEIL, M!«—wﬁll i1 (a) Displacement diagram
«—One revolution of cam—> i ot g i
—Angular displacement™ T & i : : !
(a) Displacement diagram % ¥ A i E i
z : < | i _—
3 I ’ | 2 ¥ ¥ ;
s | | | N ]
: e 3 b R |
c (b) i Velocity diagram % i (b) Velocity diagram;
[=. : 5 = [ i P o
= oc : i o © : i
© i : © 3 § 1
]l e T s 1 il
g S g I
* " S | (c) Acceleration diagram
(c) Acceleration diagram g
Fig. 7.4 displacement, velocity and Fig. 7.5 modified displacement, velocity
acceleration diagrams acceleration diagrams

— A little consideration will show that the follower remains at rest during part of
the cam rotation. The periods during which the follower remains at rest are



known as dwell periods, as shown by lines B1C1 and DE in Fig. 7.4 (a). From Fig.

7.4 (c), we see that the acceleration or retardation of the follower at the
beginning and at the end of each stroke is infinite. This is due to the fact that the
follower is required to start from rest and has to gain a velocity within no time.
This is only possible if the acceleration or retardation at the beginning and at the
end of each stroke is infinite. These conditions are however, impracticable.

In order to have the acceleration and retardation within the finite limits, it is
necessary to modify the conditions which govern the motion of the follower. This
may be done by rounding off the sharp corners of the displacement diagram at
the beginning and at the end of each stroke, as shown in Fig. 7.5 (a). By doing so,
the velocity of the follower increases gradually to its maximum value at the
beginning of each stroke and decreases gradually to zero at the end of each
stroke as shown in Fig. 7.5 (b).

The modified displacement, velocity and acceleration diagrams are shown in Fig.

7.5. The round corners of the displacement diagram are usually parabolic curves
because the parabolic motion results in a very low acceleration of the follower
for a given stroke and cam speed.

7.7 Displacement, Velocity and Acceleration Diagrams when the

Follower Moves with Simple Harmonic Motion

The displacement, velocity and acceleration diagrams when the follower moves
with simple harmonic motion are shown in Fig. 7.6 (a), (b) and (c) respectively.
The displacement diagram is drawn as follows:
a Draw a semi-circle on the follower stroke as diameter.
b Divide the semi-circle into any number of even equal parts (say eight).
¢ Divide the angular displacements of the cam during out stroke and return
stroke into the
same number of equal parts.
d The displacement diagram is obtained by projecting the points as shown in Fig.
7.6 (a).
The velocity and acceleration diagrams are shown in Fig. 7.6 (b) and (c)
respectively. Since the follower moves with a simple harmonic motion, therefore
velocity diagram consists of a sine curve and the acceleration diagram is a cosine
curve.
We see from Fig. 7.6 (b) that the velocity of the follower is zero at the beginning
and at the end of its stroke and increases gradually to a maximum at mid-stroke.
On the other hand, the acceleration of the follower is maximum at the beginning
and at the ends of the stroke and diminishes to zero at mid-stroke.
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Fig. 7.6 acceleration diagram

Let,
S = Stroke of the follower
©pand ©r= Angular displacement of the cam during out stroke and return stroke
of the follower respectively
w = angular velocity of cam

Time required for the outstroke of the follower in second

6o
to = —
w

Consider a point P moving at uniform speed wp radians per sec round the
circumference of a circle with the stroke S as diameter, as shown in Fig. 7.7 the
point (which is the projection of a point P on the diameter) executes a simple
harmonic motion as the point P rotates. The motion of the follower is similar to

that of point P’.
Peripheral speed of the point P’

TXS 1 T XS W
vp = — X E— X
2 to 2 6o
and maximum velocity of the follower on the outstroke,

T XS w Xw X2
oy =y @ mxwx2
2 6o 6o



Fig. 7.7 motion of a point

— We know that the centripetal acceleration of the point P
.2 TX wXs 2 2
ap= p = ( ) X =

op 2 6o s 2 X (00)?

— Maximum acceleration of the follower on the outstroke,
T2 X w2 X5

T2 X w? Xs

a0:a

PT T2 x (60)2
— Similarly, maximum velocity of the follower on the return stroke,
TXw XS
VR= — -
R 26,
— and maximum acceleration of the follower on the return stroke
T2w2 S
ap = ————
R™ 2 (6r)?

7.8 Displacement, Velocity and Acceleration Diagrams when

the Follower Moves with Uniform Acceleration and

Retardation

— The displacement, velocity and acceleration diagrams when the follower moves
with uniform acceleration and retardation are shown in Fig. 7.8 (a), (b) and (c)
respectively. We see that the displacement diagram consists of a parabolic curve
and may be drawn as discussed below:

a Divide the angular displacement of the cam during outstroke (6) into any even
number of equal parts and draw vertical lines through these points as shown in
fig. 7.8 (a)

b Divide the stroke of the follower (S) into the same number of equal even parts.
Join Aa to intersect the vertical line through point 1 at B. Similarly, obtain the
other points C, D etc. as shown in Fig. 20.8 (a). Now join these points to obtain
the parabolic curve for the out stroke of the follower.

d Inthe similar way as discussed above, the displacement diagram for the follower
during return stroke may be drawn.



— We know that time required for the follower during outstroke,

Bo
to = —
W
— andtime required for the follower during return stroke,
Or
tR = —
W
— Mean velocity of the follower during outstroke
S
vo = t_o
I= NS
® N
£
O
O
3
@ | |C
o B é
|A 1 23 45678 11234 seTre
— 6, —— l— 6a —
i. — Angular displacement———

(a) Displacement diagram
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Fig. 7.8 Displacement, Velocity and Acceleration Diagrams when the Follower Moves with
Uniform Acceleration and Retardation



— Since the maximum velocity of follower is equal to twice the mean velocity,
therefore maximum velocity of the follower during outstroke,

2§ 2ws
Vo= —=
to 6o
— Similarly, maximum velocity of the follower during return stroke,
2wS
VR =
R 0x
— Maximum acceleration of the follower during outstroke,
Vo 2 X2ws_ 4 wlS
ao = = 2
0 £0/2 to Bo @,
— Similarly, maximum acceleration of the follower during return stroke,
4 w2 S
aAR= 5
k™ (6r)?

7.9 Displacement, Velocity and Acceleration Diagrams when
the Follower Moves with cycloidal Motion
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The displacement, velocity and acceleration diagrams when the follower moves
with cycloidal motion are shown in Fig. (a), (b) and (c) respectively. We know that
cycloid is a curve traced by a point on a circle when the circle rolls without

slipping on a straight line.
— We know that displacement of the foIIower after time t seconds,

T
x=S [_ - sin (___ )]
6o 2 T 6o
— Velocity of the follower after time t seconds,
dx 1 2110 2mO_do
=5 [ ~ 2% s (") T
dt 6o d 6o 6o dt
S t 2m0
= _ X 4p [1—cos( )]
90 90
wS t 2mo
= [1 — cos( )]
6o Oo
— The velocity is maximum, when
2mo
cos )=-1
6o
2mo
6o -
="
2
— Similarly, maximum velocity of the follower during return stroke,
2wS
VR = 0,

— Now, acceleration of tl‘&azjcollow%r after time Es&c@ de

QH’@ sm( ]

de?
2mw?S 2m0
= W sin A )
— The acceleration is maximum, when
sin (-2 ”9) _ 1
o=
4
2mw?S



2 1m w:sS

ar = —(GR)Z

7.10 Construction of cam profile for a Radial cam

— In order to draw the cam profile for a radial cam, first of all the displacement
diagram for the given motion of the follower is drawn. Then by constructing the

follower in its proper position at each angular position, the profile of the working
surface of the cam is drawn.

— In constructing the cam profile, the principle of kinematic inversion is used, i.e.
the cam is imagined to be stationary and the follower is allowed to rotate in the
opposite direction to the cam rotation.

7.11 Examples based on cam profile

7.11.1 Draw the profile of a cam operating a knife-edge follower having a lift of 30
mm. the cam raises the follower with SHM for 150° of the rotation followed by a
period of dwell for 60°. The follower descends for the next 100° rotation of the
cam with uniform velocity, again followed by a dwell period. The cam rotates at a
uniform velocity of 120 rpm and has a least radius of 20 mm. what will be the
maximum velocity and acceleration of the follower during the lift and the return?

— S=30mm:@a=150°;N=120 rpm;
— 61 =60%rc=20mm :62=50°

— During ascent:
2nN 2mx120

= = = 12.57 rad/s
© =50 50 /
T X w Xs_T X 12.57 x 30
vmer = 2 0o 2 X150 x_lfgo = 2263
m2X w2 Xs w2 x 12.572 x 30 m
a =
max = < 2=7413 2
2 x (692 2% (150 x ) /s
— During descent:
wS
vmax= P
D 4
12.57 x 30
max = — mm
v Toox—— 216 "/ s

180

fmax=0
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Fig. 7.10

7.11.2 A cam with a minimum radius of 25 mm is to be designed for a knife-edge

follower with the following data:

To raise the follower through 35 mm during 60° rotation of the cam

Dwell for next 40° of the cam rotation

Descending of the follower during the next 90° of the cam rotation

Dwell during the rest of the cam rotation

Draw the profile of cam if the ascending and descending of the cam with simple
harmonic motion and the line of stroke of the follower is offset 10 mm from the
axis of the cam shaft.

What is the maximum velocity and acceleration of the follower during the ascent
and the descent if the cam rotates at 150 rpm?

— S=35mm:@a=60°; N=150rpm;

61 =40°%rc=25mm : @a=90% x = 10 mm



— During ascent:

v

w

max

_2mN_ 2mx150 _ rad

= = =5
_ Qoxa)xgEQTX57TX§5

m2 X w? Xs _

Amax = 2 % (82—

2 0o

X 150 X 180

m? X 5m? X 35 m
2 =138.882 /s2

—= 827.7 mm/s2

0 2 X (150 x 180)
“ 6 6’ 6’
4/\ 4' ! 8’
" |3 9
2 10"
2\, 11

— During descent

v

max

TXw X2 _nx57t><35

Bo

2 X990 x ™
180

= 549.80 mm/s

-~

Al

Y

35 mm



T2 X w? Xs w2 X 5m2 x 35 m

a =
max = = 2=17272 /g
2 x (89)2 2 X (90 x 180)

7.11.3 A cam is to give the following motion to the knife-edged follower:

To raise the follower through 30 mm with uniform acceleration and deceleration
during 120° rotation of the cam

Dwell for the next 30° of the cam rotation

To lower the follower with simple harmonic motion during the next 90° rotation
of the cam

Dwell for the rest of the cam rotation

The cam has minimum radius of 30 mm and rotates counter-clockwise at a
uniform speed of 800 rpm. Draw the profile of the cam if the line of stroke of the
follower passes through the axis of the cam shaft.

— S=30mm:@a=120°;N =800 rpm;

— 81 =30%rc=30mm : @a= 90°;

— During ascent:

_2mN_2nx840 _ rad

w= = —88
60 60
2x88x0.03
max = ———= /L. m
Vmax raE 2,52 M/g
180
4 w2S 4 882 x 0.03 m
ao = _ 7=211.9 /s2
@2 ~ (120x g
— During descent:
TXw X2 X 88 x0.03
Vinax = 9o - 7 %90 Xio =264mm/s
m2 X w? Xs w2 X 882 x0.03 m
Ay = — 7=467.6 /.
2 X 2 . S
€0) 2 % (90 x
5 67 6’ 6 7
: 3%2 s /\8
Jpe NEESS
11— 10
12— 104 \j/ﬁI
6 1 2 3 4 5 6 678 910111212
[ aRryd

- ]
- ,._I

1 Od
(@)
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Fig. 7.12

7.11.4 Draw the profile of a cam operating a roller reciprocating follower and with
the following data:

Minimum radius of cam = 25 mm
Lift = 30 mm
Roller diameter = 15 mm

The cam lifts the follower for 120° with SHM followed by a dwell period of 30°.
Then the follower lowers down during 150° of the cam rotation with uniform
acceleration and deceleration followed by dwell period. If the cam rotates at a
uniform speed of 150 rpm. Calculate the maximum velocity and acceleration of
the follower during the descent period.

— S=30mm:@a=120°; N =150 rpm ;@4 = 150°

— 61=30%r=25mm:62=60°%r=75mm

5 6 5 6’ 6‘%7:{' 8!
R T
3 3 h 0
\ 2 l 11°
2 12"

4r
01 234 56 67891011121311
|

I

90— & |= 90 -

(a)



2XSsXw
Vimax = —p—

d
2Xmx150
_2X30 XTI a0 /s
max 150 x—=%
180
4 XS X w?
fmax =
(‘Pd)zz
2xXmx150
f = 4)(30)(( 60 ):4320mm/52
max = 2
(150 x_—

180
7.11.5 The following data relate to a cam profile in which the follower moves with
uniform acceleration and deceleration during ascent and descent.

Minimum radius of cam = 25 mm

Roller diameter = 7.5 mm

Lift = 28 mm

Offset of follower axis = 12 mm towards right
Angle of ascent = 60°

Angle of descent = 90°

Angle of dwell between ascent and descent = 45°
Speed of cam = 200 rpm



Draw the profile of the cam and determine the maximum velocity and the
uniform acceleration of the follower during the outstroke and the return stroke.
— S=28mm:@a=60°;N=200rpm ;B4 =90°
— 01=45%rc=25mm: 62 = 165°%rr=7.5mm; x=12 mm
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Fig. 7.14

— During outstroke:
2XsXw
vmax =
Pa
_ 2Xx28x%x2094
max= 60 X_m_
180

4 XS X w?
.fmax = (QDd)Z

v

= 1.12m/s



4 %30 x (20.94)2

Fmax= - = 44800 mm/s?
(60x )
180
— During Return stroke:
2XSXw
vmaxz -
Pa
2 X 28x20.94
Vax = SoxT 0.747 m/s
180
f A XS X w?
max ~ ((,Dd)z
f o= 4 X 30 % (20.94)2

= 19900 mm/s?

(90 x_7 ) *
180

7.11.6 A flat-faced mushroom follower is operated by a uniform rotating cam. The
follower is raised through a distance of 25 mm in 120° rotation of the cam,
remains at rest for next 30° and is lowered during further 120° rotation of the
cam. The raising of the follower takes place with cycloidal motion and the
lowering with uniform acceleration and deceleration. However, the uniform
acceleration is 2/3 of the uniform deceleration. The least radius of the cam is 25
mm which rotates at 300 rpm.

Draw the cam profile and determine the values of the maximum velocity and
maximum acceleration during rising and maximum velocity and uniform
acceleration and deceleration during lowering of the follower.

— S=30mm:@a=60°;N=200rpm ;B4 = 90°

— 01=45%rc=25mm: 62 = 165% rr=7.5mm; x=12 mm
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Fig. 7.15
— During ascent:
2XSXw
vmax = (pa
2X%x25x%x31.4 m
mix = —e—_ — 075_
vmax 120 X_7 s
180
_ 4 XS X w?
max ~ ( )2
4 % 50'% (31.4)? mm
.fmax= 2 = 35310—2
(120 x 7o) §

7.11.7 The following data relate to a cam operating an oscillating an oscillating roller

follower:

Minimum radius of cam = 44 mm
Dia. Of roller = 14 mm
Length of the arm =40 mm

Distance from fulcrum

Centre from cam center = 50 mm
Angle of ascent = 75°
Angle of descent = 105°
Angle of dwell in



Highest position = 60°

Angle of oscillation of

Follower =28°

Draw the profile of the cam if the ascent and descent both take place with SHM.

— $=19.5mm : @a = 75° ;@4 = 105°
— 01=60%rc=22mm:62=120°%r-=7.5mm;
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7.12 Excercise

1.

Draw the cam operating knife edge follower from following data

(i) Follower to move out through distance of 20mm during 120°.

(ii) Follower to dwell for next 60°.

(iii) Follower to return to its initial position during 90°.

(iv) Follower to dwell for remaining cam rotation

The cam rotates at 500rpm. The minimum radius of cam is 40mm and line of
follower is offset 15mm from the axis of the cam and displacement to take place
with uniform acceleration and retardation both inward and outward stroke.
[December, 2014]

A cam rotating in clockwise direction at a uniform speed of 1000 rpm is required
to give a roller follower the motion defined below:

1. Follower moves outwards through 50 mm during 120° of cam rotation.

2. Follower dwells for next 60° of cam rotation

3. Follower returns to its original position during next 90° of cam rotation

4. Follower dwells for rest of cam rotation

The minimum radius of the cam is 50 mm and the diameter of roller is 10 mm.
The line of stroke of follower is off-set by 20 mm from the axis of the cam shaft. If
the displacement of the follower is to take place with uniform and equal
acceleration and retardation on both the strokes. Draw the profile of the cam and
find the max velocity and acceleration during the outwards and return strokes.
[January, 2016]

Draw the profile of a cam rotating with an oscillating roller follower to the
specification given below:

1. Follower moves outwards through an angular displacement of 200 during first
120° of cam rotation.

2. Follower returns to its original position during next 120° of cam rotation

3. Follower to dwell during the rest of cam rotation.

The distance between the pivot center and roller center is 120mm, The distance
between the pivot center and cam axis is 130mm , minimum radius of cam is
40mm, radius of roller is 10 mm The displacement of the follower is to take place
with SHM during outward stroke and inward stroke. [January, 2016]

A cam drives a flat reciprocating follower in the following manner:

During first 120° rotation of the cam, follower moves outward through a distance
of 20 mm with S.H.M. The follower dwells during next 30° of cam rotation. During
next 120° rotation of the cam, the follower moves inward with S.H.M. The follower
dwells for the next 90° of cam rotation. The minimum radius of the cam is 25 mm.
Draw the profile of the cam. [June, 2016]

A cam operates an offset follower. The least radius of the cam is 50mm, roller
diameter is 30mm, and offset is 20mm. The cam operates at 360 rpm. The angle
of ascent is 48°, angle of dwell is 42° and angle of descent is 60°. The motion is
SHM during ascent and uniform acceleration and retardation during descent.
Draw the cam profile. Consider lift of cam as 40 mm.



10.

Also calculate max velocity and acceleration during descent. [January, 2017]

A cam operates a flat-faced follower having uniform acceleration and retardation
during ascent and descent. The least radius of the cam is 50mm. During descent,
the retardation period is half of the acceleration period. The ascent lift is 37.5mm.
The ascent is for 1/4th period, dwell for 1/4th , descent for 1/3th, and dwell for
the remaining 1/6th period. The cam rotates at 600 rpm. Find the max velocity
and acceleration during ascent and descent.

Draw the cam profile. [January, 2017]

A cam with 25 mm as minimum diameter is rotating clockwise as a uniform speed
of 500 rpm and has to give the motion to the flat faced follower defined below:

1. Outward stroke of 20 mm during 120° of cam rotation with simple harmonic
motion

2. Dwell for 30° cam rotation

3. Return to its initial position during 120° of cam rotation with equal uniform
acceleration and retardation

4. Dwell for the remaining 90° cam rotation

5. Layout the cam for the above mentioned motion of follower. [June, 2017]

A cam with 30 mm as minimum diameter is rotating clockwise as a uniform speed
of 1200 rpm and has to give the motion to the roller follower 10 mm diameter as
defined below:

1. Outward stroke of 25 mm during 120° of cam rotation with equal uniform
acceleration and retardation

2. Dwell for 60° cam rotation

3. Return to its initial position during 90° of cam rotation with equal uniform
acceleration and retardation

4. Dwell for the remaining 90° cam rotation

Layout the cam profile when the roller axis is offset to right by 5 mm. [June, 2017]

Draw the cam profile for a disc cam and knife edge follower from the following
data for one revolution of cam.

(1) Angle of rise=60° (2) Follower lift=40 mm with uniform velocity (3) Angle of
dwell =30° (4) Angle of fall= 60° where follower moves with uniform velocity (5)
For remaining period of 210° the follower remains in same position (6) Diameter
of base circle of cam= 50 mm. [November 2017]

A cam is to be designed for a knife edge follower with the following data: (1) Cam
lift=40 mm during 90° of cam rotation with SHM (2) Dwell for the next 30° (3)
During the next 60° of the cam rotation, the follower returns to its original
position with uniform velocity. (4) Dwell during the remaining 180°.

Draw the profile of the cam when the line of stroke of the follower passes through
the axis of the cam shaft. The radius of the base circle of the cam is 40 mm.
[November 2017]
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