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1.1 Machine and Mechanism: 

 Mechanism:

 If a number of bodies are assembled in such a way that the motion of one causes 

constrained and predictable motion to the others, it is known as a mechanism. 

 Machine:

 A machine is a mechanism or a combination of mechanisms which, apart from 

imparting definite motions to the parts, also transmits and modifies the available 

mechanical energy into some kind of desired work. 

 Analysis:

 Analysis is the study of motions and forces concerning different parts of an existing 

mechanism. 

 Synthesis:

 Synthesis involves the design of its different parts. 

 
1.2 Types of constrained motion: 

1.2.1 Completely constrained motion: 

 When the motion between a pair is limited to a definite direction irrespective of 
the direction of force applied, then the motion is said to be a completely 
constrained motion. 

 For example, the piston and cylinder (in a steam engine) form a pair and the 
motion of the piston is limited to a definite direction (i.e. it will only reciprocate) 
relative to the cylinder irrespective of the direction of motion of the crank. 

 

Fig. 1.1 fig. 1.2 

 The motion of a square bar in a square hole, as shown in Fig. 1.1, and the motion 
of a shaft with collars at each end in a circular hole, as shown in Fig. 1.2, are also 
examples of completely constrained motion. 

1.2.2 Incompletely constrained motion: 

 When the motion between a pair can take place in more than one direction, then 
the motion is called an incompletely constrained motion. The change in the 
direction of impressed force may alter the direction of relative motion between 
the pair. A circular bar or shaft in a circular hole, as shown in Fig. 1.3, is an 
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example of an incompletely constrained motion as it may either rotate or slide in 

a hole. These both motions have no relationship with the other. 
 
 

Fig. 1.3 FIG. 1.4 

1.2.3 Successfully constrained motion: 

 When the motion between the elements, forming a pair, is such that the 
constrained motion is not completed by itself, but by some other means, then 
the motion is said to be successfully constrained motion. Consider a shaft in a 
foot-step bearing as shown in Fig. 1.4. 

 The shaft may rotate in a bearing or it may move upwards. This is a case of 
incompletely constrained motion. But if the load is placed on the shaft to prevent 
axial upward movement of the shaft, then the motion of the pair is said to be 
successfully constrained motion. The motion of an I.C. engine 

1.3 Types of Links: 

 A mechanism is made of a number of resistant bodies out of which some may have 
motions relative to the others. A resistant body or a group of resistant bodies with 
rigid connections preventing their relative movements is known as a link. 

 A link may also define as a member or a combination of members of a mechanism, 
connecting other members and having motion relative to them. 

 Links may be classified into binary, ternary and quaternary. 
 

 

 

 

1.4 Kinematic Pair: 

FIG. 1.4 Types of link 

 When two kinematic links are connected in such a way that their motion is either 
completely or successfully constrained, these two links are said to form a kinematic 
pair. 

 Kinematic pairs can be classified according to: 
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1.4.1 Kinematic pairs according to nature of contact: 

a. Lower Pair: 
o A pair of links having surfaced or area contact between the members is 

known as a lower pair. The contact surfaces of two links are similar. 

o Examples: Nut turning on a screw, shaft rotating in a bearing. 

b. Higher Pair: 
o When a pair has a point or line contact between the links, it is known as a 

higher pair. The contact surfaces of two links are similar. 

o Example: Wheel rolling on a surface, Cam and Follower pair etc. 

1.4.2 Kinematic pairs according to nature of Mechanical Constraint: 

a. Closed Pair: 
o When the elements of a pair are held together mechanically, it is known 

as a closed pair. The two elements are geometrically identical; one is solid 
and full and the other is hollow or open. The latter not only envelops the 
former but also encloses it. The contact between the two can be broken 
only by destruction of at least one of the members. 

b. Unclosed Pair: 
o When two links of a pair are in contact either due to force of gravity or 

some spring action, they constitute an unclosed pair. In this, the links are 
not held together mechanically, e.g. cam and follower pair. 

1.4.3 Kinematic pairs according to Nature of Relative Motion: 

a. Sliding pair: 

o When two links have a sliding motion relative to another; the kinematic 
pair is known as sliding pair. 

b. Turning pair: 
o When one link is revolve or turn with respect to the axis of first link, the 

kinematic pair formed by two links is known as turning pair. 

c. Rolling pair: 
o When the links of a pair have a rolling motion relative to each other, they 

form a rolling pair. 

d. Screw pair: 
o If two mating links have a turning as well as sliding motion between them, 

they form a screw pair. 

e. Spherical pair: 
o When one link in the form of sphere turns inside a fixed link, it is a 

spherical pair. 
 

1.5 Types of Joint: 

 The usual types of joints in a chain are: 

o Binary Joint 

o Ternary Joint 

o Quaternary Joint 
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a. Binary Joint: 
Fig1.5. Types of joint 

o If two links are joined at the same connection, it is called a binary joint. 
For example, in fig. at joint B 

b. Ternary Joint: 
o If three links joined at a connection, it is known as a ternary link. 

For example point T in fig. 

c. Quaternary Joint: 
o If four links joined at a connection, it is known as a quaternary link. 

For example point Q in fig. 

1.6 Degrees of Freedom: 

 An unconstrained rigid body moving in space can describe the following independent 
motion: 

a. Translational motion along any three mutually perpendicular axes x, y and z. 

b. Rotational motion about these axes 
 

Fig.1.6 Degrees of freedom 
 A rigid body possesses six degrees of freedom. 
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 Degrees of freedom of a pair is defined as the number of independent relative 
motions, both translational and rotational, a pair can have. 

 DOF = 6 – Number of Restraints 
 

1.7 Kinematic chain 

 Kinematic chain is defined as the combination of kinematic pairs in which each links 
forms a part of two kinematic pairs and the relative motion between the links is 
either completely constrained or successfully constrained. 

 Examples: slider-crank mechanism 

 For a kinematic chain 

N = 2 P – 4 = 2 (j + 2) / 3 
 Where N = no. of links, P = no. of Pairs and j = no. of joints 

 When, 
LHS > RHS, then the chain is locked 
LHS = RHS, then the chain is constrained 
LHS < RHS, then the chain is unconstrained 

 
 

1.8 Kutzbach Criterion 

 DOF of a mechanism in space can be determined as follows: 
 In mechanism one link should be fixed. Therefore total no. of movable links are in 

mechanism is (N-1) 

 Any pair having 1 DOF will impose 5 restraints on the mechanism, which reduces its 
total degree of freedom by 5P1. 

 Any pair having 2 DOF will impose 4 restraints on the mechanism, which reduces its 
total degree of freedom by 4P2 

 Similarly, the other pairs having 3, 4 and 5 degrees of freedom reduce the degrees of 
freedom of mechanism. Thus, 

 Thus, 

 
 Hence, 

F = 6 (N-1) – 5 P1 – 4 P2 – 3 P3 – 2 P4 – 1P5 – 0P6 
 

F = 6 (N-1) – 5 P1 – 4 P2 – 3 P3 – 2 P4 – 1P5 
 The above equation is the general form of Kutzbach criterion. This is applicable to 

any type of mechanism including a spatial mechanism. 

 
1.9 Grubler’s criterion 

 If we apply the Kutzbach criterion to planer mechanism, then equation of Kutzbach 
criterion will be modified and that modified equation is known as Grubler’s Criterion 
for planer mechanism. 

 Therefore in planer mechanism if we consider the links having 1 to 3 DOF, the total 
number of degree of freedom of the mechanism considering all restraints will 
becomes, 

F = 3 (N-1) – 2 P1 – 1 P2 
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 The above equation is known as Grubler’s criterion for planer mechanism. 

 Sometimes all the above empirical relations can give incorrect results, e.g. fig (a) has 
5 links, 6 turning pairs and 2 loops. Thus, it is a structure with zero degree of 
freedom. 

 

Fig. 1.7 

 However, if the links are arranged in such a way as shown in fig. (b), a double 
parallelogram linkage with one degree of freedom is obtained. This is due to the 
reason that the lengths of links or other dimensional properties are not considered 
in these empirical relations. 

 Sometimes a system may have one or more link which does not introduce any extra 
constraint. Such links are known as redundant links and should not be counted to 
find the degree of freedom. For example fig. (B) has 5 links, but the function of the 
mechanism is not affected even if any one of the links 2, 4 and 5 are removed. Thus, 
the effective number of links in this case is 4 with 4 turning pairs, and thus 1 degree 
of freedom. 

 In case of a mechanism possessing some redundant degree of freedom, the effective 
degree of freedom is given by, 

F = 3 (N – 1) – 2 P1 – 1P2 – Fr 
 Where Fr = no. of redundant degrees of freedom 

 

1.10 The Four-Bar chain 

 A four bar chain is the most fundamental of the plane kinematic chains. It is a much 
preffered mechanical device for the mechanisation and control of motion due to its 
simplicity and versatility. Basically, it consists of four rigid links which are connected 
in the form of a quadrilateral by four pin-joints. 

 When one of the link fixed, it is known as mechanism or linkage. A link that makes 
complete revolution is called the crank. The link opposite to the fixed link is called 
coupler, and the forth link is called a lever or rocker if it oscillates or another crank if 
it rotates. 

 It is impossible to have a four-bar linkage if the length of one of the link is greater 
than the sum of other three. This has been shown in fig. 
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1.11 Grashof’s law: 
Fig. 1.7 Four bar chain 

 We have already discussed that the kinematic chain is a combination of four or more 
kinematic pairs, such that the relative motion between the links or elements is 
completely constrained The simplest and the basic kinematic chain is a four bar chain 
or quadric cycle chain, as shown in Fig. 5.18. It consists of four links, each of them 
forms a turning pair at A, B, C and D. The four links may be of different lengths. 

 According to Grashof’s ’s law for a four bar mechanism, the sum of the shortest and 
longest link lengths should not be greater than the sum of the remaining two link 
lengths if there is to be continuous relative motion between the two links. 

 

Fig. 1.8 Grashof’s law 
 

 A very important consideration in designing a mechanism is to ensure that the input 
crank makes a complete revolution relative to the other links. The mechanism in 
which no link makes a complete revolution will not be useful. In a four bar chain, one 
of the links, in particular the shortest link, will make a complete revolution relative to 
the other three links, if it satisfies the Grashof’s law. Such a link is known as crank or 
driver. In Fig.5.18, AD (link 4) is a crank. 

 The link BC (link 2) which makes a partial rotation or oscillates is known as lever or 
rocker or follower and the link CD (link 3) which connects the crank and lever is 
called connecting rod or coupler. The fixed link AB (link 1) is known as frame of the 
mechanism. 
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1.12 Inversion of Mechanism: 

 When the number of links in kinematic chain is more than three, the chain is known 
as mechanism. When one link of the kinematic chain at a time is fixed, give the 
different mechanism of the kinematic chain. The method of generating different 
mechanism by fixing a link is called the inversion of mechanism. 

 The number of inversion is equal to the numbers of links in the kinematic chain. 

 The inversion of mechanism may be classified as: 

a. Inversion of four-bar chain 

b. Inversion of single slider crank chain 

c. Inversion of double slider crank chain 

 

1.13 Inversion of Four-Bar chain 

1.13.1 First inversion: coupled wheel of locomotive 

 The mechanism of a coupling rod of a locomotive (also known as double crank 
mechanism) which consists of four links is shown in Fig. 

 
 
 

 
Fig. 1.9 coupled wheel of locomotive 

 In this mechanism, the links AD and BC (having equal length) act as cranks and 
are connected to the respective wheels. The link CD acts as a coupling rod and 
the link AB is fixed in order to maintain a constant centre to Centre distance 
between them. This mechanism is meant for transmitting rotary motion from 
one wheel to the other wheel. 

 
 

1.13.2 Second inversion: Beam Engine 

 A part of the mechanism of a beam engine (also known as cranks and lever 
mechanism) which consists of four links is shown in Fig. 1.10. 

 In this mechanism, when the crank rotates about the fixed centre A, the lever 
oscillates about a fixed centre D. The end E of the lever CDE is connected to a 
piston rod which reciprocates due to the rotation of the crank. 
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Fig. 1.10 beam engine 

 

 In other words, the purpose of this mechanism is to convert rotary motion into 
reciprocating motion. 

1.13.3 Third inversion: watts indicator mechanism 

 A Watt’s indicator mechanism (also known as Watt's straight line mechanism or 
double lever mechanism) which consists of four links is shown in Fig. 

 The four links are: fixed link at A, link AC, link CE and link BFD. It may be noted 
that BF and FD form one link because these two parts have no relative motion 
between them. The links CE and BFD act as levers. 

 The displacement of the link BFD is directly proportional to the pressure of gas or 
steam which acts on the indicator plunger. On any small displacement of the 
mechanism, the tracing point E at the end of the link CE traces out approximately 
a straight line. 

 
 

Fig. 1.11 watts indicator mechanism 
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1.14 The slider-crank chain 

 When one of the turning pairs of a four-bar chain is replaced by a sliding pair, it 
becomes a single slider-crank chain or simply a slider-crank chain. 

 It is also possible to replace two sliding pairs of a four-bar chain to get a double 
slider-crank chain. In a slider-crank chain, the straight line path of the slider may be 
passing through the fixed pivot O or may be displaced. 

 The distance e between the fixed pivot O and the straight line path of the slider is 
called the offset and the chain so formed an offset slider-crank chain. 

 Different mechanisms obtained by fixing different links of a kinematic chain are 

known as its inversions. 
 

1.14.1 First inversion 

 This inversion is obtained when link 1 is fixed and links 2 and 4 are made the 
crank and slider respectively. (fig.a) 

 Applications: 

a Reciprocating engine 

b Reciprocating compressor 
 
 
 
 
 
 
 
 

 

 

1.14.2 Second inversion 
Fig. 1.12 first inversion 

 Fixing of the link 2 of a slider-crank chain results in the second inversion. 

 Applications: 

a Whitworth quick-return mechanism 

b Rotary engine 

1.14.3 Third Inversion 

 By Fixing of the link 3 of the slider-crank mechanism, the third inversion is 
obtained. Now the link 2 again acts as a crank and the link 4 oscillates. 

 Applications: 
a Oscillating cylinder engine 
b Crank and slotted-lever mechanism 

 

1.14.4 Fourth Inversion 

 If the link 4 of the slider-crank mechanism is fixed, the fourth inversion is 
obtained. Link 3 can oscillates about the fixed pivot B on the link 4. This makes 
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the end A of the link 2 to oscillate about B and the end O to reciprocate along the 

axis of the fixed link 4. 

 Application: Hand Pump 

Fig. 1.13 hand pump 
 

 Fig.1.13 shows a hand-pump. Link 4 is made in the form of a cylinder and a 
plunger fixed to the link 1 reciprocates in it. 

 

1.15 Whitworth Quick-Return Mechanism: 

 This mechanism used in shaping and slotting machines. 

 In this mechanism the link CD (link 2) forming the turning pair is fixed; the driving 
crank CA (link 3) rotates at a uniform angular speed and the slider (link 4) attached to 
the crank pin at A slides along the slotted bar PA (link 1) which oscillates at D. 

 The connecting rod PR carries the ram at R to which a cutting tool is fixed and the 
motion of the tool is constrained along the line RD produced. 

 

Fig. 1.14 Whitworth quick returns mechanism 
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 The length of effective stroke = 2 PD. And mark P1R1 = P2 R2 = PR. 
 

𝑡i𝑚𝑒 𝑜𝑓 𝑐𝑢𝑡𝑡i𝑛𝑔 
=

 
 

𝑎 
=

 
 

𝑎 
=   

360° − Q 
  

𝑡i𝑚𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 Q 360° − 𝑎 Q 
 

1.16 Rotary engine 

 Sometimes back, rotary internal combustion engines were used in aviation. But now- 
a-days gas turbines are used in its place. 

 

Fig. 1.15 rotary engine 
 

 It consists of seven cylinders in one plane and all revolves about fixed center D, as 
shown in Fig. 5.25, while the crank (link 2) is fixed. In this mechanism, when the 
connecting rod (link 4) rotates, the piston (link 3) reciprocates inside the cylinders 
forming link 1. 

 
 

1.17 Oscillating cylinder engine 

 The arrangement of oscillating cylinder engine mechanism, as shown in Fig. Is used 
to convert reciprocating motion into rotary motion. 

 

Fig. 1.16 oscillating cylinder engine 
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 In this mechanism, the link 3 forming the turning pair is fixed. The link 3 corresponds 
to the connecting rod of a reciprocating steam engine mechanism. When the crank 
(link 2) rotates, the piston attached to piston rod (link 1) reciprocates and the 
cylinder (link 4) oscillates about a pin pivoted to the fixed link at A. 

 

1.18 Crank and slotted-lever Mechanism 

 This mechanism is mostly used in shaping machines, slotting machines and in rotary 
internal combustion engines. 

 In this mechanism, the link AC (i.e. link 3) forming the turning pair is fixed, as shown 
in Fig. The link 3 corresponds to the connecting rod of a reciprocating steam engine. 
The driving crank CB revolves with uniform angular speed about the fixed center C. A 
sliding block attached to the crank pin at B slides along the slotted bar AP and thus 
causes AP to oscillate about the pivoted point A. 

 A short link PR transmits the motion from AP to the ram which carries the tool and 
reciprocates along the line of stroke R1R2. The line of stroke of the ram (i.e. R1R2) is 
perpendicular to AC produced. 

 

 

Fig.1.17 Crank and slotted lever mechanism 
 

 In the extreme positions, AP1 and AP2 are tangential to the circle and the cutting 
tool is at the end of the stroke. The forward or cutting stroke occurs when the crank 
rotates from the position CB1 to CB2 (or through an angle β) in the clockwise 
direction. The return stroke occurs when the crank rotates from the position CB2 to 
CB1 (or through angle α) in the clockwise direction. Since the crank has uniform 
angular speed, therefore, 

 

𝑡i𝑚𝑒 𝑜𝑓 𝑐𝑢𝑡𝑡i𝑛𝑔 
=   

Q 
=

 
  

Q 
=  

360°  − 𝑎 
  

𝑡i𝑚𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎 360° − Q 𝑎 



 

 

 

- Since the tool travels a distance of R1R2 during cutting and return stroke, therefore 
travel of the tool or length of stroke 

 

= 𝑅1𝑅2 = 𝑃1𝑃2 = 2𝑃1𝑄 = 2𝐴𝑃1 sin ∠P1𝐴𝑄 
= 2𝐴𝑃1 sin(90° − 𝛼) = 2𝐴𝑃 cos 𝛼 (∵𝐴𝑃1 = 𝐴𝑃) 

2 2 

= 2𝐴𝑃 × 𝐶𝐵1 (∵cos 𝛼 = 𝐶𝐵1) 
𝐴𝐶 2 𝐴𝐶 

= 2𝐴𝑃 × 𝐶𝐵 
𝐴𝐶 

(∵𝐶𝐵1 = 𝐶𝐵) 

-   From Fig. 1.18, we see that the angle β made by the forward or cutting stroke is 
greater than the angle αdescribed by the return stroke. Since the crank rotates with 
uniform angular speed, therefore the return stroke is completed within shorter time. 
Thus it is called quick return motion mechanism. 

 

1.19 Double Slider Crank Chain 
 

- A four-bar chain having two turning and two sliding pairs such that two pairs of the 
same kind are adjacent is known as a double-slider-crank chain [Fig 1.18]. 

 

 

 
Fig 1.18 

 

1.19.1 First Inversion 

 This inversion is obtained when the link 1 is fixed and the two adjacent pairs 23 and 
34 are turning pairs and the other two pairs 12 and 41 sliding pairs.

 Application:
Elliptical trammel 



 

 

 

Elliptical Trammel 

 

Fig 1.19 
 

 Fig 1.19 shows an elliptical trammel in which the fixed link 1 is in the form of guides 
for sliders 2 and 4. With the movement of the sliders, any point C on the link 3, 
except the midpoint of AB will trace an ellipse on a fixed plate. The midpoint of AB 
will trace a circle.

 Let at any instant, the link 3 make angle θ with the X-axis. Considering the 
displacements of the sliders from the centre of the trammel,

 

𝑥 = 𝐵𝐶 cos 𝜃 and 𝑦 = 𝐴𝐶 sin 𝜃 

∴ 𝑥 

𝐵𝐶 
= cos 𝜃 and 𝑦 

 

𝐴𝐶 
= sin 𝜃 

 

 Squaring and adding,
( 𝑥 )2 + ( 𝑦 )2 = cos2 𝜃 + sin2 𝜃 = 1 

𝐵𝐶 𝐴𝐶 

 

 This is the equation of an ellipse. Therefore, the path traced by C is an ellipse with 
the semi -major and semi-minor axes being equal to AC and BC respectively.

 When C is the midpoint AB; AC = BC, 
and

( 𝑥 )2 + ( 𝑦 )2  = 1 or 𝑥2 + 𝑦2 = 1 
𝐵𝐶 𝐴𝐶 

which is the equation of the circle with AC (=BC) as the radius of the circle. 
 

1.19.2 Second Inversion 

 If any of the slide-blocks of the first inversion is fixed, the second inversion of the 
double-slider-crank chain is obtained.

 When the link 4 is fixed, the end B of the crank 3 rotates about A and the link 1 
reciprocates in the horizontal direction.

 Application:
Scotch Yoke 



 

 

 

Scotch Yoke 
 

 A scotch-yoke mechanism (Fig. 1.20) is used to convert the rotary motion into a 
sliding motion.

 As the crank 3 rotates, the horizontal portion of the link 1 slides or reciprocates in 
the fixed link 4.

 

 
1.19.3 Third Inversion 

Fig 1.20 

 

 This inversion is obtained when the link 3 of the first inversion is fixed and the link 1 
is free to move.

 Application:
Oldham’s Coupling 

 

Oldham’s Coupling 
 

 Figure 1.21 shows an actual Oldham's coupling which is used to connect two parallel 
shafts when the distance between their axes is small.

 The two shafts have flanges at the ends and are supported in the fixed bearings 
representing the link 3. In the flange 2, a slot is cut in which the tongue X of the link 1 
is fitted and has a sliding motion. Link 1 is made circular and has another tongue Y at 
right angles to the first and which fits in the recess of the flange of the shaft 4. Thus, 
the intermediate link 1 slides in the two slots in the two flanges while having the 
rotary motion.

 As mentioned earlier, the midpoint of the intermediate piece describes a circle with 
distance between the axes of the shafts as diameter. The maximum sliding velocity 
of each tongue in the slot will be the peripheral velocity of the midpoint of the 
intermediate disc along the circular path.

 Maximum sliding velocity = peripheral velocity along the circular path
= angular velocity of shaft x distance between shafts 

 

Fig 1.21 



 

 

 

1.20 Examples 
 

1 For the kinematic linkages shown in following fig. calculate the following: 

The numbers of binary links (Nb) 

The numbers of ternary links (Nt) 
The numbers of other (quaternary) links (No) 
The numbers of total links (n) 
The numbers of loops (L) 
The numbers of joints or pairs (P1) 
The numbers of degrees of freedom (F) 

 

 

a Nb = 4; Nt = 4; N0 = 0; N = 8; L = 4; P1 = 11 (by counting) 
P1 = (N + L – 1) = 11 
F = 3 (N – 1) – 2P1 

F = 3 (8 – 1) – 2×11 = -1 or, v 
F = N – (2 L + 1) 
F = 8 – (2 ×4 + 1) = -1 

 
b Nb = 4; Nt = 4; N0 = 0; N = 8; L = 3; P1 = 10 (by counting) 

P1 = (N + L – 1) = 10 

F = 3 (N – 1) – 2P1 

F = 3 (8 – 1) – 2×10 = 1 or, 



 

 

 

F = N – (2 L + 1) 

F = 8 – (2 ×3 + 1) = 1 

 
c Nb = 7; Nt = 2; N0 = 2; N = 11; L = 5; P1 = 15 (by counting) 

F = N – (2 L + 1) 

F = 11 – (2 × 5 + 1) = 0 
 
 

2 A crank and slotted lever mechanism used in a shaper has a centre distance of 300 
mm between the centre of oscillation of the slotted lever and the centre of 
rotation of the crank. The radius of the crank is 120 mm. Find the ratio of the time 
of cutting to the time of return stroke. 

 

 

 

Given: AC = 300 mm, CB1 = 120 mm 

sin ∠CAB1 = sin (90° − 𝛼) = 𝐶𝐵1 = 120 = 0.4 

𝛼 
 

∠CAB1 = 90° − 
𝛼 

 

= sin 

2 𝐴𝐶 300 

−1 

0.4 = 23.6° 

= 90° − 23.6° = 66.4° 
2 

𝛼 = 2 × 66.4° = 132.8° 

𝑇i𝑚𝑒 𝑜ƒ 𝐶𝑢𝑡𝑡i𝑛𝑔 𝑆𝑡𝑟𝑜𝑘𝑒 = 360°−𝛼 = 3 60°−132.8° = 1.72 
𝑇i𝑚𝑒 𝑜ƒ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆𝑡𝑟𝑜𝑘𝑒 𝛼 132.8° 

 

 
3 In a crank and slotted lever quick return motion mechanism, the distance between 

the fixed centres is 240 mm and the length of the driving crank is 120 mm. Find the 
inclination of the slotted bar with the vertical in the extreme position and the time 
ratio of cutting stroke to the return stroke. If the length of the slotted bar is 450 
mm, find the length of the stroke if the line of stroke passes through the extreme 
positions of the free end of the lever. 

2 



 

 

 

 

 
 

Given: AC = 240 mm, CB1 = 120 mm, AP1 = 450 mm 

- Inclination of the slotted bar with the vertical 
Let ∠ CAB1 = Inclination of the slotted bar with the vertical 

𝛼 𝐵1𝐶 120 
sin ∠CAB1 = sin (90° −   ) = 

2 𝐴𝐶 
= 

240 
= 0.5 

- Time ratio of cutting stroke to the return stroke 

90° − 𝛼 = 30° 
2 

𝛼 = 90° − 30° = 60° 
2 

𝛼 = 2 × 60° = 120° 

𝑇i𝑚𝑒 𝑜ƒ 𝐶𝑢𝑡𝑡i𝑛𝑔 𝑆𝑡𝑟𝑜𝑘𝑒 = 360°−𝛼 = 360°−120° = 2 
𝑇i𝑚𝑒 𝑜ƒ 𝑅𝑒𝑡𝑢𝑟𝑛 𝑆𝑡𝑟𝑜𝑘𝑒 𝛼 120° 

 
 
 

4 The distance between the two parallel shafts connected by Oldham’s Coupling is 25 mm. 

The speed of the driving shaft is 250 rpm. Find the maximum speed of sliding of the tongue 

of the intermediate piece in the slot in the flange. 

 

Angular speed of the shaft, 𝜔 = 
2𝜋×𝑁 

60 

Where N is the number of revolutions per min. 

and ω is the angular velocity of shafts in radians/sec. 

 
Therefore, 𝜔 = 2𝜋×250 = 26.18 𝑟𝑎𝑑i𝑎𝑛𝑠/𝑠𝑒𝑐. 

60 

 
Maximum speed of sliding, 𝑣 = 𝑑. 𝜔 

where v is the velocity of sliding, d is the distance between the axes of parallel shafts. 

Therefore, 𝑣 = 25 × 26.18 = 654.5 𝑚𝑚/𝑠𝑒𝑐 = 0.6545 𝑚/𝑠𝑒𝑐 
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2.1.1 Type, Number and Dimensional Synthesis: 

TYPE SYNTHESIS: Type Synthesis refers to the kind of mechanism selected; it might be a 

linkage, a geared system, belts and pulleys, or even a cam system. This beginning phase of 

total design problem usually involves design factors such as manufacturing processes, 

materials,, safety space and economics. The study of kinematics is usually only slightly 

involved in type synthesis. 

NUMBER SYNTHESIS: Number synthesis deals with the number of links, and the number 

of joints or pairs that are required to obtain a certain mobility. Number synthesis is the 

second step in design following type synthesis. 

DIMENSIONAL SYNTHESIS: The third step in design, determining the dimensions of 

individual link is called dimensional synthesis. 

 

2.1.2 Function Generation, Path Generation and Body Guidance: 

FUNCTION GENERATION: 

A frequent requirement in design is that of causing an output member to rotate, oscillate or 

reciprocate according to a specified function of time or function of input motion. This is 

called function generation. 

A simple example is that of synthesizing a four-bar linkage to generate the function y=f(x). In 

this case x would represent the motion (crank angle) of input crank, and the linkage would 

be designed so that the motion (angle) of the output rocker would approximate the function 

y. 

Other examples of function generation are as follows: 

1. In a conveyor line the output member of a mechanism must move at the constant 

velocity of the conveyor, while performing some operations – Ex. bottle capping, 

return, pick up the next cap and repeat the operation. 

2. The output member must pause or stop during its motion cycle to provide time for 

another event. The second event might be a sealing, stapling, or fastening operation 

of some kind. 

3. The output member must rotate at a specified non uniform velocity function 

because it is geared to another mechanism that requires such a rotating motion. 

PATH GENERATION: 
A second type of synthesis problem is called path generation. This refers to a problem in 

which a coupler point is to generate a path having a prescribed shape. Common 

requirements are that a portion of the path be a circular arc, elliptical or straight line. 

Sometimes it is required that the path cross over itself as in a figure-of-eight. 

BODY GUIDANCE: 
The third general class of synthesis problem is called body guidance. Here we are interested 

in moving an object from one position to another. The problem may call for a simple 

translation or combination of translation and rotation (JCB example). In the construction 



 

 

 

industry, for example, heavy parts such as scoops and bulldozer blades must be moved 

through a series of prescribed positions. 

2.1.3 Two-Position Synthesis of Slider-Crank Mechanisms: 
 

 
Fig. 2.1 Slider Crank Mechanism 

The centered slider-crank mechanism of the Fig (a) has a stroke B1B2 equal to twice the 

crank radius r2 (B1B2 = 2r2). As shown, the extreme positions of B1 and B2, also called limiting 

positions of the slider, are found by constructing circular arcs through O2 of length (r3 - r2) 

and (r3 + r2), respectively. 

 In general the centered slider crank mechanism must have r3 > r2. However, the special 

case of r1 = r2 results in the isosceles slider-crank mechanism, in which the slider 

reciprocates through O2 and the stroke 4 × r2.

 All points on the coupler of the isosceles slider crank mechanism generate elliptical 

paths. The paths generated by the points on the coupler of the slider crank of Fig (a) are 

not elliptical, but they are always symmetrical about the axis O2B.

The linkage of Fig (b) is called general or offset slider crank mechanism certain special 

effects can be obtained by changing the offset distance e. Ex. the stroke B1B2 is always 

greater than 2 × crank radius r2. 

 This feature can be used to synthesize quick return mechanism where a slower working 

stroke is desired. Also the crank angle required to execute the forward stroke is different 

from that the return stroke.

Let distance B1B2 = (𝑟3 + 𝑟2 ) cos Ø1 − (𝑟3 – 𝑟2 ) cos Ø2 

= 𝑟3 cos Ø1 + 𝑟2 cos Ø1 − 𝑟3 cos Ø2 + 𝑟2 cos Ø2 

= 𝑟2(cos Ø1 + cos Ø2) + 𝑟3(cos Ø1 − cos Ø2) 

 
Stoke B1B2 > 2𝑟2 

Positive; cos Ø1 > cos Ø2 



 

 

 

2.1.4 Two Position Synthesis of Crank-And-Rocker Mechanism: 
 
 

Fig. 2.2(a) Extreme Position of Crank &Rocker Mechanism 

 The limiting positions of the rocker in a crank and rocker mechanism are shown as points 

B1 and B2 (Found same as slider crank linkage).

 In this particular case the crank executes the angle Ψ while the rocker moves from B1 to 

B2. Note on the return stroke that the rocker swing from B2 to B1 through the same angle 

but the crank moves through the angle (360° – Ψ).

 There are many cases in which crank and rocker mechanism is superior to cam and 

follower system. Among the advantages over cam system are smaller forces involved, 

the elimination of retaining spring, and the closer clearance because of the use of 

revolute pairs.

Cutting stroke B2       B1 (Ø angle on rocker) Ψ angle on crank 

Return stroke B1 B2 (Ø angle on rocker) 360° – Ψ angle on crank 
ƒ 

ƒ 𝑄 = 180 + 𝛼 = { 
 

 

𝑡1 = 
𝜔 

2𝜋 − ƒ 180 − 𝛼 
𝑡 = 

360 − ƒ 
= 2𝜋 − ƒ} 

 
 

2 𝜔 𝜔 
 
 
 
 
 
 
 
 
 
 
 
 
 

F 

Fig. 2.2 (b) Synthesis of a four bar linkage to generate rocker angle Ø 



 

 

 

 To synthesis a crank and rocker mechanism for specified value of Ø and 𝛼, locate the 

point O4 in the figure (b) and choose any desired rocker length r4, then draw the two 

positions O4B1 and O4B2 of link 4 separated by the angle Ø as given. Through B1 construct 

any line X Then through B2 construct the line Y at given angle 𝛼 to the line X. The 

intersection of these two lines defines the location of the crank pivot O2. Because line X 

was originally chosen arbitrarily, there are an infinite number of solutions of this 

problem.

 As shown in fig (b) the distance B2C is 2r2 or twice the crank length. So we bisect this 

distance to find r2.

Problem – 1: Four bar Crank-Rocker quick return linkage for specified time ratio. Time 

ratio = 1:1.25 with 45° output rocker motion. Design the synthesis. 

(Design of machinery-R. L. Norton) 

Solution: 
𝛼 

𝑇𝑅 = 
𝛽 

𝛼 + 𝛽 = 360° 

Construction angle 𝛿 = |180 − 𝛼| 

= |180 − 𝛽| 
 
 

 
1. Draw the output link O4B in both extreme positions, in any convenient location, such 

that the desired angle of motion 𝜃4, is subtended. 

2. Calculate 𝛼, 𝛽, and 𝛿 using equations. In this example, 𝛼 = 160°, 𝛽 = 200°, 𝛿 = 20°. 

3. Draw a construction line through point B1 at any convenient angle. 

4. Draw a construction line through point B2 at angle 𝛿 from the first line. 

5. Label the intersection of the two construction lines O2. 

6. The line O2O4 now defines the ground link. 



 

 

 

7. Calculate the lengths of crank and coupler by measuring O2B1 and O2B2 and solve 

simultaneously. 
 

Coupler + crank = 𝑂2𝐵1 

Coupler − crank = 𝑂2𝐵2 

Or you can construct the crank length by swinging an arc centered at O2 from B1 to cut 
line O2B2 extended. Label that intersection B′ . The line B2B′ is twice the crank length. 

1 1 

Bisect this line segment to measure crank length O2A1. 
 

2.1.5 Three Position Synthesis: 
 
 
 

Fig. 2.3 (a) Rotation of input rocker O2A through the angle ƒ12 cause rocker O4B to rock 

through the angle Ø12 

 
 

 
Fig. 2.3 (b) Linkage inverted on the O4B position 



 

 

𝑅𝐵𝑂4  =? 25mm 

 
 
 

 

 

 
Fig. 2.3 (c) 

 
 In  figure (a) motion  of input  rocker  O2A through  the  angle  ƒ12  causes a motion of the 

output rocker O4B through the angle Ø12.

 To employ inversion as a technique of synthesis, let us hold O4B stationary and permit 

the remaining links, including the frame, to occupy the same relative positions as in 

figure (a). The result {figure (b)} is called inverting on the output rocker. Note that A1B1 is 

positioned he same in fig (a) and (b). Therefore the inversion is made on the O4B1 

position. Because O4B1is fixed, the frame will have to move in order to get the linkage to

the A2B2 position. In fact, the frame must move backward through the angle Ø12. The 
second position is therefore O′ A′ B′ O4. 

2   2   2 

 Fig. (c) illustrates a problem and the synthesized linkage in which it is desired to 

determine the dimensions of a linkage in which the output lever is to occupy three 

specified positions corresponding to three given position of input lever.

 In fig (c) the starting angle of the input lever is 𝜃2; and ƒ12, ƒ23, and ƒ13 are swing angle 

respectively between the three design positions 1 and 2, 2 and 3, and 1 and 3. 

Corresponding angles of swing Ø12, Ø23 and Ø13 are desired for the output lever. The 

length of link 4 and the starting position O4 are to be determined.

Problem – 2: Given data: Synthesize a 4 bar mechanism by method of inversion. 
 

𝑅𝐴𝑂2 = 20 mm ƒ12  = 40° ɸ12 = 30° 𝜃2 = 45° 
𝑅𝑂4𝑂2 =   60 mm ƒ23  = 35° ɸ23 = 25°  

Find: 𝑅𝐴𝐵 =? 60mm 

  𝜃4  =? 60 

Solution: 



 
 

 

2 

3 

1 

3 

 
 

 
 

The solution to the problem is given in the figure and is based on inverting the linkage on 

link 4. First we draw the input rocker O2A in the three specified positions and locate a 

desired position for O4. Because we will invert on link 4 in the first design position we draw a 

ray from O4 to A2 and rotate it backward through the angle ɸ12 to locate 𝐴′ . Similarly we 

draw another ray O4A3 and rotate it backward through the angle ɸ13 to locate 𝐴′ . Because 

we are inverting on the first design position, A1 and A′ are coincident. Now we draw mid 

normals to the line A1A′   . These intersect at B1 and define the length of coupler link 3 and 

the length of starting position of link 4. 

2.1.6 Precision Position, Structural Error, Chebychev Spacing: 

 In this chapter we have chosen to work with two or three or four positions of the linkage 

called precision positions, and to find a linkage that exactly satisfies the desired function 

at a few chosen positions.

 Structural error is defined as the theoretical difference between the function produced 

by the synthesized linkage and the function originally prescribed.

Fig. 2.4 



  

 

 

 A very good trial for the spacing of these precision positions is called Chebychev spacing. 

For n precision position in the range 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛+1,    the Chebychev spacing according 

to Freudenstein and Sandor, is

1 1 (2j − 1)𝜋 
𝑥j = 

2 
(𝑥𝑛+1 + 𝑥0) − 

2 
(𝑥𝑛+1 − 𝑥0)𝑐𝑜𝑠 

2𝑛 

Where   j = 1,2, … 𝑛 And n = No. of precision positions 

Problem – 3: y = sin x , where x in radian , 0 ≤ 𝗑 ≤ n = 3 Precision. Solve with 
4 

Chebychev spacing. 

Solution: 

1 1 (2j − 1)𝜋 
𝑥j = 

2 
(𝑥𝑛+1 + 𝑥0) − 

2 
(𝑥𝑛+1 − 𝑥0)𝑐𝑜𝑠 

2𝑛 

1 𝜋( 1 𝜋( (2 − 1)𝜋 
𝑥1 = 2 4 + 0) − 2   4 − 0) 𝑐𝑜𝑠 2 × 3 = 0.0526 

1 𝜋 1 𝜋 
3𝜋 

𝑥2 =  ( + 0) −  ( − 0) 𝑐𝑜𝑠  = 0.3927 
2  4  2  4  2 × 3 

1 𝜋 1 𝜋 5𝜋 
𝑥3 =  ( + 0) −  ( − 0) 𝑐𝑜𝑠  = 0.7328 

2  4  2  4  2 × 3 

Now, corresponding values of y are 
 

𝑦1 = sin 0.0526 = 0.0525 

𝑦2 = sin 0.3927 = 0.3287 

𝑦3 = sin 0.7328 = 0.6689 
 



 

 

 

Before closing this section, we should note two or more problems that can arise to 

confound the designer in using precision position for synthesis. These are called Branch 

defect and order defect. Branch defect refers to a possible completed design that meets all 

of the prescribed requirements of each of the precision position, but which cannot be 

moved continuously between these positions without being taken apart and reassembled. 

Order defect refers to a developed linkage that can reach all of the precision positions but 

not in the desired order. 

2.1.7 Overlay Method: 

 Synthesis of a function generator, say using the overlay method, is the easiest and 

quickest of all methods to use. It is not always possible to obtain a solution and 

sometimes the accuracy is rather poor. Theoretically, however one can employ as many 

precision positions as are desired in the process.

Problem – 4: 𝑦 = sin 𝗑 where x in radian 0 ≤ 𝗑 ≤ 𝜋 (Uniform spacing for output rocker 
4 

∆ƒ = 90°  and  ∆ɸ = 60°) 

Solution: 
 

 
Position X ƒ (degree) y ɸ (degree) 

1 0 0 0 0 

2 0.1418 16.24 0.1414 12 

3 0.2867 32.86 0.2828 24 

4 0.4380 50.22 0.4242 36 

5 0.6014 68.90 0.5656 48 

6 
𝜋 

= ∆𝑥 
4 ∆ƒ = 90° 0.707 = ∆𝑦 ∆ɸ = 60° 

 
 

(1) 𝑦 = ɸ 
∆𝑦 

= 12 × 
0.707 

= 0.1414 
∆ɸ 60 

(2) 𝑦 = sin 𝑥 →   𝑥 = sin−1 𝑦 

𝜋 
= sin−1 (0.1414 × ) = 0.1414 

180 

= 0.1418 

(3) ƒ = 𝑥 
∆ƒ 

=  
0.1418 × 90 

 
 

 
 

= 16.24 
 

∆𝑥 𝜋 
4 



 

 

3 

3 

 

2.1.8 Freudenstein’s Equation: 
 
 
 

 
Fig. 2.5 

 Replace the link of four bar linkage by position vector and write the vector equation.

𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 = 0 

In complex polar notation above equation can be written as 

𝑟1𝑒j𝜃1 + 𝑟2𝑒j𝜃2 + 𝑟3𝑒j𝜃3 + 𝑟4𝑒j𝜃4 = 0 

Above equation is transformed into complex rectangular form by putting 

𝑒j𝜃 = cos 𝜃 + j · sin 𝜃. 

∴ 𝑟1( cos 𝜃1 + j · sin 𝜃1) + 𝑟2( cos 𝜃2 + j · sin 𝜃2) + 𝑟3( cos 𝜃3 + j · sin 𝜃3) 

+ 𝑟4( cos 𝜃4 + j · sin 𝜃4) = 0 

 
 Now, if the real and imaginary components of the above equation are separated, we 

obtain the two algebraic equations

𝑟1 cos 𝜃1 + 𝑟2 cos 𝜃2 + 𝑟3 cos 𝜃3 + 𝑟4 cos 𝜃4 = 0 

𝑟1 sin 𝜃1 + 𝑟2 sin 𝜃2 + 𝑟3 sin 𝜃3 + 𝑟4 sin 𝜃4 = 0 

In above equation sin 𝜃1 = 0 and cos 𝜃1 = −1 

∴ −𝑟1 + 𝑟2 cos 𝜃2 + 𝑟3 cos 𝜃3 + 𝑟4 cos 𝜃4 = 0 

𝑟2 sin 𝜃2 + 𝑟3 sin 𝜃3 + 𝑟4 sin 𝜃4 = 0 

Now, 

∴ 𝑟3 cos 𝜃3 = 𝑟1 − 𝑟2 cos 𝜃2 − 𝑟4 cos 𝜃4 

∴ 𝑟3 sin 𝜃3 = −𝑟2 sin 𝜃2 − 𝑟4 sin 𝜃4 

 Squaring and Adding both the equations

𝑟2(cos2 𝜃3 + sin2 𝜃3) = (𝑟1 − 𝑟2 cos 𝜃2 − 𝑟4 cos 𝜃4)2 + (−𝑟2 sin 𝜃2 − 𝑟4 sin 𝜃4)2
 

 
∴ 𝑟2 = (𝑟1 − 𝑎)2 + (−𝑟2 sin 𝜃2 − 𝑟4 sin 𝜃4)2 



 

 

4 

𝑟1 

  3 1 2 4   

 

= 𝑟2 − 2𝑎𝑟1 + 𝑎2 + 𝑟2 sin2 𝜃2 + 2𝑟2𝑟4 sin 𝜃2 sin 𝜃4 + 𝑟2 sin2 𝜃4 
1 2 4 

= 𝑟2 − 2(𝑟2 cos 𝜃2 + 𝑟4 cos 𝜃4)𝑟1 + (𝑟2 cos 𝜃2 + 𝑟4 cos 𝜃4)2 + 𝑟2 sin2 𝜃2 
1 2 

+ 2𝑟2𝑟4 sin 𝜃2 sin 𝜃4 + 𝑟2 sin2 𝜃4 

= 𝑟2 − 2𝑟1𝑟2 cos 𝜃2 − 2𝑟1𝑟4 cos 𝜃4 + 𝑟2 cos2 𝜃2 + 2𝑟2𝑟4 cos 𝜃2 cos 𝜃4 + 𝑟2 cos2 𝜃4 

1 + 𝑟2 sin2 𝜃2 + 2𝑟2𝑟4 sin
2
𝜃2 sin 𝜃4 + 𝑟2 sin2 𝜃4 

4
 

2 4 

= 𝑟2 + 𝑟2 + 𝑟2 − 2𝑟1𝑟2 cos 𝜃2 − 2𝑟1𝑟4 cos 𝜃4 + 2𝑟2𝑟4(cos 𝜃2 cos 𝜃4 + sin 𝜃2 sin 𝜃4) 
1 2 4 

∴ 𝑟2 − 𝑟2 − 𝑟2 − 𝑟2 + 2𝑟1𝑟2 cos 𝜃2 + 2𝑟1𝑟4 cos 𝜃4 = 2𝑟2𝑟4 cos(𝜃2 − 𝜃4) 
3 1 2 4 

 

Dividing both the sides by 2r2r4 
 

𝑟2 − 𝑟2 − 𝑟2 − 𝑟2 

∴ 3 1 2 4   +     cos 𝜃2
 + 

𝑟1 
 
cos 𝜃4 = cos(𝜃2 − 𝜃4) 

2𝑟2𝑟4 𝑟4 𝑟2 
 

𝐾1 cos 𝜃2 + 𝐾2 cos 𝜃4 + 𝐾3 = cos(𝜃2 − 𝜃4) 
 

Where  

𝑟1 

𝐾1 =  , 𝐾2 

𝑟4 

 
= 

𝑟1 

𝑟2 

 

 
, 𝐾3 

 
= 

𝑟2 − 𝑟2 − 𝑟2 − 𝑟2 

2𝑟2𝑟4 
 

 Freudenstein’s equation enables us to perform this same task by analytical means. Thus 

suppose we wish the output  lever  of  a  four-bar  linkage  to  occupy  the position 

Ø1, Ø2, and Ø3  corresponding to the angular positions ƒ1, ƒ2, and ƒ3   of the input lever. 

We simply replace 𝜃2     with ƒi, 𝜃4with Øi, and write the equation three times, once for 

each position.

𝐾1 cos ƒ1  + 𝐾2 cos ɸ1  + 𝐾3  = cos(ƒ1  − ɸ1) 

𝐾1 cos ƒ2  + 𝐾2 cos ɸ2  + 𝐾3  = cos(ƒ2  − ɸ2) 

𝐾1 cos ƒ3  + 𝐾2 cos ɸ3  + 𝐾3  = cos(ƒ3  − ɸ3) 

 
 

Problem – 5: Synthesis a function generator 𝑦 = 𝑒𝗑 0 ≤ 𝗑 ≤ 1 using Chebychev spacing 

and 3 precision position and obtain the solution 

Solution: 

Let Chebychev spacing equation 

1 1 2j − 1 

𝑥j = 
2 

(𝑥𝑛+1 + 𝑥0) − 
2 

(𝑥𝑛+1 − 𝑥0) cos ( 
2𝑛 

) 𝜋 

𝑥 = 1 (1 + 0) − 1 (1 − 0) cos 𝜋 = 0.067 → 𝑦   = 𝑒0.067 = 1.069 
1 2 2 6 1 



 

 

 

𝑥 = 
2 

 
𝑥 = 

3 

1 1 
− cos 

2 2 

1 1 
− cos 

2 2 

3𝜋 0.5 

6 
= 0.5 → 𝑦2 = 𝑒 = 1.649 

5𝜋 0.933 

6 
= 0.933 → 𝑦2 = 𝑒 = 2.54 

Now we choose starting angles for input and output levers and also total swing angles for 

each. These are arbitrary decisions and may or may not result in good linkage design, in the 

sense that structural errors between the precision points may be large or the transmission 

angles may be poor. 

Here for the input lever we choose 30° starting angle (ψ) and 100° total swing angle. For the 

output lever we choose starting angle 240° (Ø) and total swing 100° with this first and last 

raw of the table can be completed. 
 

Position X 𝑦 = 𝑒𝑥 ƒ degree ɸ degree 

- 0 1 30 240 

1 0.067 1.069 36.7 244 

2 0.5 1.649 80 277.76 

3 0.933 2.54 123.3 329.73 

- 1 2.718 130 340 

 
 

Next to obtain the values of ƒ and Ø corresponding to precision points, we write 

ƒ = 𝑎𝑥 + 𝑏 

30 = 𝑎(0) +𝑏 

130 = 𝑎(1) + 𝑏 

Solving above equations we get     𝑎 = 100  𝑎𝑛𝑑   𝑏 = 30 

Now,  ƒ1  = 𝑎𝑥1  + 𝑏 = 100(0.067) + 30 = 36.7 

ƒ2  = 𝑎𝑥2  + 𝑏 = 100(0.5) + 30 = 80 

ƒ3  = 𝑎𝑥3  + 𝑏 = 100(0.933) + 30 = 123.3 
 

Same way  

ɸ = 𝑐𝑦 + 𝑑 

240 = 𝑐(1) + 𝑑 

340 = 𝑐(2.718) + 𝑑 
 
 
 

Solving above equations we get 𝑐 = 58.20  𝑎𝑛𝑑 𝑑 = 181.79 



 

 

  3 1 2 4   

 

Now, ɸ1 = 𝑐𝑦1 + 𝑑 = 58.20(1.069) + 181.79 = 244 

ɸ2 = 𝑐𝑦2 + 𝑑 = 58.20(1.649) + 181.79 = 277.76 

ɸ3 = 𝑐𝑦3 + 𝑑 = 58.20(2.54) + 181.79 = 329.73 

Now complete the table with above values 
 

Let, 𝐾1 cos 𝜃2 + 𝐾2 cos 𝜃4 + 𝐾3 = cos(𝜃2 − 𝜃4) 

Putting 𝜃2 → ƒ (input) and 𝜃4 → ɸ (output) 

𝐾1 cos ƒ1  + 𝐾2 cos ɸ1  + 𝐾3  = cos(ƒ1  − ɸ1) 

𝐾1 cos ƒ2  + 𝐾2 cos ɸ2  + 𝐾3  = cos(ƒ2  − ɸ2) 

𝐾1 cos ƒ3  + 𝐾2 cos ɸ3  + 𝐾3  = cos(ƒ3  − ɸ3) 
 

Where  

𝑟1 

𝐾1 =  , 𝐾2 

𝑟4 

 
= 

𝑟1 

𝑟2 

 

 
, 𝐾3 

 
= 

𝑟2 − 𝑟2 − 𝑟2 − 𝑟2 

2𝑟2𝑟4 

 

Putting the values in the equation, 
 

∴ 𝐾1 cos 36.7 + 𝐾2 cos 244 + 𝐾3 = cos(36.7 − 244) 

∴ 𝐾1 cos 80 + 𝐾2 cos 277.76 + 𝐾3 = cos(80 − 277.76) 

∴ 𝐾1 cos 123.3 + 𝐾2 cos 329.73 + 𝐾3 = cos(123.3 − 329.73) 

When the trigonometric operations are carried out, we have 
 

 ∴ 0.8𝐾1 − 0.44𝐾2 + 𝐾3 = −0.89 … . . (1) 

 
∴ 0.17𝐾1 + +0.13𝐾2 + 𝐾3 = −0.95 … . . (2) 

 
∴ −0.55𝐾1 + 0.86𝐾2 + 𝐾3 = −0.90 … . . (3) 

By solving (1) & (2) 
 

By Solving (2) & (3) 

0.63𝐾1 − 0.59𝐾2 = 0.06 
 

0.72𝐾1 − 0.73𝐾2 = −0.05 

 

We have 𝐾1 = 1.43 
 

𝐾2 = 1.48 

𝐾3 = −1.38 

  

 
𝐾1 = 

𝑟1 

𝑟4 

 
→ 𝑟4 =

 𝑟1   
=

 

𝐾1 

1 
 

 

1.43 

 
= 0.699 (Take r1 

 
= 1 unit) 



 

 

  3 1 2 4   

 

 

 
𝐾2 

𝑟1 

= 
𝑟2

 

 
→ 𝑟2 

𝑟1 

= 
𝐾2

 

1 
= 0.675 

1.48 

 
𝐾3 = 

𝑟2 − 𝑟2 − 𝑟2 − 𝑟2 

2𝑟2𝑟4 

= 0.675) 

 
→ 𝑟3 = 0.81 unit (Here 𝐾3 = −1.38, 𝑟4 = 0.699, 𝑎𝑛𝑑 𝑟2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Solution by Graphical Method 

 

Problem – 6: Synthesis a function generator to solve the equation 

y  
1

 

x 
using three precision positions. 

over therange 1  x  2 

 

Solution: 

Choosing Chebychev spacing, using equation, 

1 1  2j 1 

xj  xn1    x0   xn1    x0 cos  , j  1,2, ........ , 
2 2  2n  



the values of x and corresponding values of y to be 
 

x1  1.067, y1  0.937 

x2  1.500, y2  0.667 

x3  1.933, y1  0.517 

We must now choose starting for the input and output levers and also total swing angles for 

each. These are arbitrary decisions and may or may not result in a good linkage design in the 

sense that the structural errors between the precision points may be large or the 

transmission angles may be poor. Sometimes, in such a synthesis, it is even found that one 

= 



 

 

 

of the pivots must be disconnected in order to move from one precision point to another. 

Generally, some trail – and – error work is necessary to discover the best starting angles and 

swing angles. 

Here, for the input lever, we choose a 30° starting angle and 90° total swing angle. For the 

output lever, we choose a starting angle of 240° and again choose a range of 90° total travel. 

With these choices made, the first and last rows of table can be completed. 

Accuracy Positions 
 

Position X 
ƒ 

degree 
𝑦 ɸ degree 

- 1.000 30.00 1.000 240.00 

1 1.067 36.03 0.937 251.34 

2 1.500 75.00 0.667 300.00 

3 1.933 83.97 0.517 326.94 

- 2.000 120.00 0.500 330.00 

 
Next, to obtain the values of ƒ and ɸ corresponding to the precision points, we write 

  a x b,   c y  d   (1) 

 
and use the data in the first and last rows of Table to evaluate the constants a, b, c, and d. 

When this is done, we find equations (1) are 

  90x  60,    180y  420   (2) 

 
These equations can now be used to compute the data for the remaining rows in Table and 

to determine the scales of the input and output levers of the synthesized linkage. 

Now take the values of ƒ and ɸ from the second, third, and fourth lines of Table and 

substitute them for θ2 and θ4 in equation K1 cos2  K2 cos4  K3  cos 2  4  .Repeat 

this for the third and fourth lines. We then have the three equations 

K1 cos36.03  K2 cos251.34  K3  cos36.03 

K1 cos75.00  K2 cos300.00  K3  cos75.00 

 251.34  

 300.00 

K1 cos113.97  K2 cos326.94  K3  cos113.97  326.94  (3) 

When the trigonometric operations are carried out, we have 

0.8087 K1  0.3200 K2  K3   0.8160 

0.2588 K1  0.5000 K2  K3   0.7071 

0.4062 K1  0.8381 K2  K3   0.8389   (4) 

Upon solving Equation (4) we obtain 

K1  0.4032, K2  0.4032, K3  1.0130 



 

 

1 

 

 

Using r1 = 1.00 units, we obtain, from equation K  
r1 , 
r4 

r  
r1 

 1.00 
 2.48 units 

4 

K1 0.4032 

r    
 

r 2  r 2  r 2  r 2 
Similarly, from equations K2  1   and 

r2 

K3 
 3 1 2 4 

2r2 r4 

,we learn that 

r2  2.48units and r3  0.968units 

The result is the crossed linkage shown in figure. 
 

 

2.1.9 Bloch’s Method Of Synthesis: 
 
 
 

 
Fig. 2.6 

 

In figure replace the link of a four bar linkage by position vector and write the vector 

equation 

∴ 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 = 0 … . . (𝑎) 

In complex polar notation above equation can be written as 



 

 

3 4 

4 2 

 

∴ 𝑟1𝑒j𝜃1 + 𝑟2𝑒j𝜃2 + 𝑟3𝑒j𝜃3 + 𝑟4𝑒j𝜃4  = 0 ......................................... (𝑏) 

The first and second derivatives of this equation are 

∴ 𝑟2𝜔2𝑒j𝜃2 + 𝑟3𝜔3𝑒j𝜃3 + 𝑟4𝜔4𝑒j𝜃4 = 0 ............................................ (𝑐) 
∴ 𝑟2(𝛼2 + j𝜔2)𝑒j𝜃2  + 𝑟3(𝛼3 + j𝜔2)𝑒j𝜃3  + 𝑟4(𝛼4 + j𝜔2)𝑒j𝜃4  = 0 .................................... (𝑑) 

2 3 4 

 

(Here 
𝑑𝜃1 

= 0 & 
𝑑𝜃 

= 𝜔 because first link is fixed) 
𝑑𝑡 𝑑𝑡 

 

Now we transform equations (b), (c), and (d) back into vector notation and we obtain the 

equation 
 

𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 = 0 

∴ 𝜔2𝑟2 + 𝜔3𝑟3 + 𝜔4𝑟4 = 0 
∴ (𝛼2 + j𝜔2)𝑟2 + (𝛼3 + j𝜔2)𝑟3 + (𝛼4 + j𝜔2)𝑟4 = 0 

2 3 4 
 

Solving equation for 𝑟2 gives  
 

1 1 1 
[0  𝜔3  𝜔4 ] 
0 (𝛼3 + j𝜔2) (𝛼4 + j𝜔2) 

3 4 
1 1 1 

[  𝜔2  𝜔3  𝜔4 ] 
(𝛼2 + j𝜔2) (𝛼3  + j𝜔2) (𝛼4 + j𝜔2) 

2 3 4 
 

Similar expressions can be obtained for 𝑟3and 𝑟4 

 

From above we find  
𝑟2 = 𝜔4(𝛼3 + j𝜔2) − 𝜔3(𝛼4 + j𝜔2) 

𝑟3 = 𝜔2(𝛼4 + j𝜔2) − 𝜔4(𝛼2 + j𝜔2) 
𝑟4 = 𝜔3(𝛼2 + j𝜔2) − 𝜔2(𝛼3 + j𝜔2) 

2 3 

𝑟1 = −𝑟2 − 𝑟3 − 𝑟4 

 

Problem – 7: Synthesize a four bar linkage to give the following values for the angular 

velocity and acceleration (use Bloch method). 

Given 𝑚2 = 200 rad/sec 𝑎2 = 0 rad/sec2 

𝑚3 = 85 rad/sec 𝑎3 = −1000 rad/sec2 

𝑚4 = 130 rad/sec 𝑎4 = −16000 rad/sec2 
 

Solution:  
𝑟2 = 𝜔4(𝛼3 + j𝜔2) − 𝜔3(𝛼4 + j𝜔2) 

3 4 

= 130(−1000 + j 852) − 85(−16000 + j 1302) 

= 1230000 − j 497000 

= 1330000 ∠ − 22° 

= 



 

 

 
𝑟3 = 𝜔2(𝛼4 + j𝜔2) − 𝜔4(𝛼2 + j𝜔2) 

4 2 

 
= 200(−16000 + j 1302) − 130(0 + j 2002) 

= −3200000 − j1820000 
= 3690000 ∠ − 150.4° 

𝑟4 = 𝜔3(𝛼2 + j𝜔2) − 𝜔2(𝛼3 + j𝜔2) 
2 3 

= 85(0 + j 2002) − 200(−1000 + j 852) 

= 200000 + j 1955000 

= 1965000 ∠ 84.15° 

𝑟1 = −𝑟2 − 𝑟3 − 𝑟4 

= −(1230000 − j 497000) − (−3200000 − j 1820000) − (200000 + j 1955000) 

= 1770000 + j 362000 

= 1810000 ∠ 11.6° 

Figure O2A = 33.25 mm; AB = 92.25 mm; O4B = 49.12 mm; O2 O4 = 45.25 mm. 
 

In Fig.(a) these four vectors are plotted to a scale of 106 units per inch. In order to make r1 

horizontal an in the –x direction, the entire vector system must be rotated counterclockwise 

180° - 11.6° = 168.4°. The resulting linkage can then be constructed by using r1 for link 1, r2 

for link 2, and so on, as shown in Fig.(b). This mechanism has been dimensioned in mm and, 

if analyzed, will show that the conditions of the example are fulfilled. 

Magnitude = √12300002 + 4970002 

= 1326615.61 

≅ 1330000 

Angle → tan 𝜃 = 
−497000

 
1230000 

𝜃 = −22° 

So result 𝑅 = 1330000 ∠ − 22° 

𝑅 = 1330000(cos −22 ° + j sin −22 °) 

= 1230000 − j 497000 
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3.1 Introduction 

 There are many methods for determining the velocity of any point on a link in a 

mechanism whose direction of motion (i.e. path) and velocity of some other point on 

the same link is known in magnitude and direction, yet the following two methods:
1 Instantaneous centre method 

2 Relative velocity method 

 The instantaneous centre method is convenient and easy to apply in simple 

mechanisms, whereas the relative velocity method may be used to any 

configuration diagram.

3.2 Velocity Of Two Bodies Moving In Straight Lines 

 Here we shall discuss the application of vectors for the relative velocity of two 

bodies moving along parallel lines and inclined lines, as shown in Fig. 2.1 (a) and 2.2
(a) respectively. 

 Consider two bodies A and B moving along parallel lines in the same direction with 

absolute velocities vA and vB such that vA > vB , as shown in Fig. 2.1 (a). The relative 

velocity of A with respect to B,
𝑣𝐴𝐵  =  𝑣𝑒𝑐𝑡𝑜𝑟 𝑑i𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝐴 𝑎𝑛𝑑 𝑣𝐵 = →→ − → 

𝑣𝐴 𝑣𝐵 

 From Fig. 2.1 (b), the relative velocity of A with respect to B (i.e. vAB) may be written 

in the vector form as follows :

 

Fig. 3.1 relative velocity of two bodies moving along parallel line 

 Similarly, the relative velocity of B with respect to A,
𝑣𝐴𝐵 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑i𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝐴 𝑎𝑛𝑑 𝑣𝐵 

 Now consider the body B moving in an inclined direction as shown in Fig. 2.2 (a). The 

relative velocity of A with respect to B may be obtained by the law of parallelogram 

of velocities or triangle law of velocities. Take any fixed point o and draw vector oa 

to represent vA in magnitude and direction to some suitable scale. Similarly, draw 

vector ob to represent vB in magnitude and direction to the same scale. Then vector ba 

represents the relative velocity of A with respect to B as shown in Fig. 7.2 (b). In the



 

 

 

 

similar way as discussed above, the relative velocity 

of A with respect to B, 

 

Fig. 3.2 relative velocity of two bodies moving along inclined line 

 
𝑣𝐴𝐵 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑i𝑓𝑓𝑒𝑟𝑒𝑐𝑒 𝑜𝑓 𝑣𝐴 𝑎𝑛𝑑 𝑣𝐵 

 Similarly, the relative velocity of B with respect to A
𝑣𝐵𝐴 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑑i𝑓𝑓𝑒𝑟𝑒𝑐𝑒 𝑜𝑓 𝑣𝐵 𝑎𝑛𝑑 𝑣𝐴 

 From above, we conclude that the relative velocity of a point A with respect to B 

(𝑣𝐴𝐵 ) and the relative velocity of point B with respect to A (𝑣𝐵𝐴) are equal in 

magnitude but opposite in direction
𝑣𝐴𝐵 = − 𝑣𝐵𝐴 

 
3.3 Motion Of A Link 

 Consider two points A and B on a rigid link A B, as shown in Fig. 2.3 (a). Let one of the 

extremities (B) of the link move relative to A, in a clockwise direction. Since the 

distance from A to B remains the same, therefore there can be no relative motion 

between A and B, along the line AB. It is thus obvious, that the relative motion of B 

with respect to A must be perpendicular to AB.

 Hence velocity of any point on a link with respect to another point on the same link is 

always perpendicular to the line joining these points on the configuration (or space) 

diagram.

 The relative velocity of B with respect to A (i.e. vBA) is represented by the vector ab 

and is perpendicular to the line A B as shown in Fig. 2.3 (b).

 We know that the velocity of the point B with respect to A
𝑣𝐵𝐴 =  𝑚 × 𝐴𝐵 ............................... (i) 

 Similarly the velocity of the point C on AB with respect to A
𝑣𝐶𝐴 = 𝑚 × 𝐴𝐶 ................................ (ii) 



 

 

 

 

 

 
 

 
 

 Form equation (i) and (ii),

 

Fig. 3.3 Motion of a Link 

𝑣𝐶𝐴 =  
𝑚 × 𝐴𝐶 

=  
𝐴𝐶 .......................... 

(iii)
 

   

𝑣𝐵𝐴 𝑚 × 𝐴𝐵 𝐴𝐵 

 Thus, we see from equation (iii), that the point c on the vector ab divides it in the 

same ratio as C divides the link AB.

 

3.4 Velocity Of A Point On A Link By Relative Velocity Method 

 Consider two points A and B on a link as shown in Fig. 2.4 (a). Let the absolute velocity 

of the point A i.e. vA is known in magnitude and direction and the absolute velocity of 

the point B i.e. vB is known in direction only. Then the velocity of B may be 

determined by drawing the velocity diagram as shown in Fig. 2.4 (b). The velocity 

diagram is drawn as follows :
1 Take some convenient point o, known as the pole. 

2 Through o, draw oa parallel and equal to vA, to some suitable scale. 

3 Through a, draw a line perpendicular to AB of Fig. 2.4 (a). This line will represent 

the velocity of B with respect to A, i.e. vBA. 

4 Through o, draw a line parallel to vB intersecting the line of vBA at b 

5 Measure ob, which gives the required velocity of point B ( vB), to the scale 

 

 
Fig. 3.4 



 

 

 

 

3.5 Velocities In Slider Crank Mechanism 

 In the previous article, we have discussed the relative velocity method for the velocity 

of any point on a link, whose direction of motion and velocity of some other point on 

the same link is known. The same method may also be applied for the velocities in a 

slider crank mechanism.

 A slider crank mechanism is shown in Fig. 2.5 (a). The slider A is attached to the 

connecting rod AB. Let the radius of crank OB be r and let it rotates in a clockwise 

direction, about the point O with uniform angular velocity ω rad/s. Therefore, the 

velocity of B i.e. vB is known in magnitude and direction. The slider reciprocates along 

the line of stroke AO.
 
 

Fig. 3.5 

 

 The velocity of the slider A (i.e. vA) may be determined by relative velocity method as 

discussed below :
1 From any point o, draw vector ob parallel to the direction of vB (or 

perpendicular to OB) such that ob = vB = ω.r, to some suitable scale, as shown 

in Fig. 2.5 (b). 

2 Since AB is a rigid link, therefore the velocity of A relative to B is 

perpendicular to AB. Now draw vector ba perpendicular to A B to represent 

the velocity of A with respect to B i.e. vAB. 

3 From point o, draw vector oa parallel to the path of motion of the slider A 

(which is along AO only). The vectors ba and oa intersect at a. Now oa 

represents the velocity of the slider I.e. vA, to the scale. 

 The angular velocity of the connecting rod A B (ωAB) may be determined as follows:

𝑚 = 
𝑣𝐵𝐴 

= 
𝑎𝑏 

𝐴𝐵 𝐴𝐵 𝐴𝐵 



 

 

 

 

3.6 Rubbing Velocity At A Pin Joint 

 The links in a mechanism are mostly connected by means of pin joints. The rubbing 

velocity is defined as the algebraic sum between the angular velocities of the two links 

which are connected by pin joints, multiplied by the radius of the pin.

 Consider two links OA and OB connected by a pin joint at O as shown in fig.
 

 

 
 Let,

Fig. 3.6 Links connected by pin joints 

ω1 = angular velocity of link OA 

ω2 = angular velocity of link OB 

 According to the definition,

 Rubbing velocity at the pin joint O
= (𝑚1 −  𝑚1) × 𝑟 if the links move in the same direction 

= (𝑚1 +  𝑚1) × 𝑟 if the links move in the same direction 

 
 

3.7 Examples Based On Velocity 

3.7.1 In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm 

long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about 

D. BC and AD are of equal length. Find the angular velocity of link CD when angle 

BAD = 60°. 

 Given : NBA = 120 r.p.m. or ωBA = 2 π × 120/60 = 12.568 rad/s 

 Since the length of crank A B = 40 mm = 0.04 m, therefore velocity of B with 

respect to A or velocity of B, (because A is a fixed point), 

 Since the length of crank A B = 40 mm = 0.04 m, therefore velocity of B with 

respect to A or velocity of B, (because A is a fixed point), 
vBA = vB = ωBA × AB = 12.568 × 0.04 = 0.503 m/s 

 Since the link AD is fixed, therefore points a and d are taken as one point in the 

velocity diagram. Draw vector ab perpendicular to B A, to some suitable scale, to 

represent the velocity of B with respect to A or simply velocity of B (i.e. vBA or vB) 

such that 

Vector ab = vBA = vB = 0.503 m/s 



 

 

 

 

 

 
Fig. 3.7 

 

 Now from point b, draw vector bc perpendicular to CB to represent the velocity of 

C with respect to B (i.e. vCB) and from point d, draw vector dc perpendicular to CD 

to represent the velocity of C with respect to D or simply velocity of C (i.e. vCD or 

vC). The vectors bc and dc intersect at c. 

By measurement, we find that 

VCD = vC = vector dc = 0.385 m/s 

 Angular velocity of link CD, 

𝑚 = 
𝑣𝐶𝐷 =  

0. 385 
= 4. 8 𝑟𝑎𝑑⁄𝑠 

  

𝐶𝐷 𝐶𝐷 0. 08 

 
3.7.2 The crank and connecting rod of a theoretical steam engine are 0.5 m and 2 m 

long respectively. The crank makes 180 r.p.m. in the clockwise direction. When it 

has turned 45° from the inner dead centre position, determine: 

1. Velocity of piston, 2. Angular velocity of connecting rod, 3. Velocity of point E on 

the connecting rod 1.5 m from the gudgeon pin, 4. velocities of rubbing at the pins 

of the crank shaft, crank and crosshead when the diameters of their pins are 50 

mm, 60 mm and 30 mm respectively, 5. Position and linear velocity of any point G on 

the connecting rod which has the least velocity relative to crank shaft. 

 

 Given:

 NBO = 180 r.p.m. or ωBO = 2 π × 180/60 = 18.852 rad/s 

 Since the crank length OB = 0.5 m, therefore linear velocity of B with respect to O
or velocity of B (because O is a fixed point), 

vBO = vB = ωBO × OB = 18.852 × 0.5 = 9.426 m/s 

 

 First of all draw the space diagram and then draw the velocity diagram as shown in 

fig.



 

 

 

 

 

 

Fig. 3.8 

 By measurement, we find that velocity of piston P,
𝑣𝑃 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑝 = 8. 15 𝑚/𝑠 

 From the velocity diagram, we find that the velocity of P with respect to B
vPB = vector bp = 6.8 m/s 

 Since the length of connecting rod PB is 2 m, therefore angular velocity of the
connecting rod,  

𝑚 = 
𝑣𝑃𝐵 = 

 

6. 8 
 

 

 
= 3. 4 𝑟𝑎𝑑/𝑠 

𝑃𝐵 𝑃𝐵 2 
𝑣𝐸 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑒 = 8. 5 𝑚/𝑠 

 We know that velocity of rubbing at the pin of crank-shaft

= 
𝑑0 × 𝑚 

2 
 Velocity of rubbing at the pin of crank

 
 

𝐵𝑂 

 
= 0. 47 𝑚/𝑠 

= 
𝑑𝐵 (𝑚 

 

2 𝐵𝑂 

 

+ 𝑚 

 
 
𝑃𝐵 

 

) = 0. 6675 𝑚/𝑠 

 Velocity of rubbing at the pin of crank
= 

𝑑𝑐 × 𝑚 = 0. 051 𝑚/𝑠 
 

2 

 By measurement we find that

𝑃𝐵 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑔 = 5 𝑚/𝑠 

 By measurement we find linear velocity of point G
𝑣𝐺 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑔 = 8 𝑚/𝑠 

 
3.7.3 In Fig. , the angular velocity of the crank OA is 600 r.p.m. Determine the linear 

velocity of the slider D and the angular velocity of the link BD, when the crank is 

inclined at an angle of 75° to the vertical. The dimensions of various links are: OA = 

28 mm; AB = 44 mm; BC 49 mm; and BD = 46 mm. The centre distance between the 

canters of rotation O and C is 65 mm. The path of travel of the slider is 11 mm 

below the fixed point C. The slider moves along a horizontal path and OC is vertical. 



 

 

 

 
 

 
 

 Given:

Fig. 3.9 

 NAO = 180 r.p.m. or ωBO = 2 π × 180/60 = 18.852 rad/s 

 OA = 28 mm
𝑣𝑂𝐴 = 𝑣𝐴 =  𝑚𝐴𝑂 × 𝐴𝑂 = 1. 76 𝑚/𝑠 

 Since the points O and C are fixed, therefore these points are marked as one 

point, in the velocity diagram. Now from point o, draw vector oa perpendicular to 

O A, to some suitable scale, to represent the velocity of A with respect to O or 

simply velocity of A such that

𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑎 = 𝑣𝑂𝐴 = 𝑣𝐴 = 1. 76 𝑚/𝑠 

 From point a, draw vector ab perpendicular to A B to represent the velocity of B 

with respect A (i.e. vBA) and from point c, draw vector cb perpendicular to CB to 

represent the velocity of B with respect to C or simply velocity of B (i.e. vBC or vB). 

The vectors ab and cb intersect at b.

 From point b, draw vector bd perpendicular to BD to represent the velocity of D 

with respect to B (i.e. vDB) and from point o, draw vector od parallel to the path of 

motion of the slider D which is horizontal, to represent the velocity of D (i.e. vD). 

The vectors bd and od intersect at d.

 

Fig.3.10 



 

 

 

 

 By measurement, we find that velocity of slider D,
𝑣𝐷 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑑 = 1. 6 𝑚/𝑠 

 By measurement from velocity diagram, we find that velocity of D with respect to 

B,

𝑣𝐷𝐵 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑑 = 1. 7 𝑚/𝑠 

 Therefore angular velocity of link BD

𝑚 =  
𝑣𝐷𝐵  = 

1. 7 = 36. 96 𝑟𝑎𝑑/𝑠 
𝐵𝐷 𝐵𝐷 0. 046 

 
3.7.4 The mechanism, as shown in Fig. 7.11, has the dimensions of various links as 

follows : 

AB = DE = 150 mm; BC = CD = 450 mm; EF = 375 mm. The crank AB makes an angle of 

45° with the horizontal and rotates about A in the clockwise direction at a uniform 

speed of 120 r.p.m. The lever DC oscillates about the fixed point D, which is 

connected to AB by the coupler BC. 

The block F moves in the horizontal guides, being driven by the link EF. Determine: 1. 

velocity of the block F, 2. angular velocity of DC, and 3. rubbing speed at the pin C 

which is 50 mm in diameter. 

 Given : 

 NBA = 120 r.p.m. or ωBA = 2 π × 120/60 = 4 π rad/s 

 Since the crank length A B = 150 mm = 0.15 m, therefore velocity of B with respect 

to A or simply velocity of B (because A is a fixed point), 

vBA = vB = ωBA × AB = 4 π × 0.15 = 1.885 m/s 

 

Fig.3.11 

 
 Since the points A and D are fixed, therefore these points are marked as one 

point as shown in Fig. (b). Now from point a, draw vector ab perpendicular to A B, 



 

 

 

𝐷𝐶 

 

to some suitable scale, to represent the velocity of B with respect to A or simply 

velocity of B, such that 

Vector ab = vBA = vB = 1.885 m/s 

 The point C moves relative to B and D, therefore draw vector bc perpendicular 

to BC to represent the velocity of C with respect to B (i.e. vCB), and from point 

d, draw vector dc perpendicular to DC to represent the velocity of C with 

respect to D or simply velocity of C (i.e. vCD or vC). The vectors bc and dc 

intersect at c. 
 

 
Fig. 3.12 

 

 Since the point E lies on DC, therefore divide vector dc in e in the same ratio as 

E divides CD in Fig. (a). In other words 

ce/cd = CE/CD 

 From point e, draw vector ef perpendicular to EF to represent the velocity of F 

with respect to E (i.e. vFE) and from point d draw vector df parallel to the path 

of motion of F, which is horizontal, to represent the velocity of F i.e. vF. The 

vectors ef and df intersect at f. 

vF = vector df = 0.7 m/s 

 By measurement from velocity diagram, we find that velocity of C with respect to 

D, 

vCD = vector dc = 2.25 m/s 

𝑚 = 
𝑣𝐶𝐷 

= 5 
𝑟𝑎𝑑 

𝐷𝐶 𝑠 

 From velocity diagram, we find that velocity of C with respect to B, 

vCB = vector bc = 2.25 m/s 

 Angular velocity of BC, 
 

𝑣 2. 25 

𝑚 =   𝐶𝐷 = = 5 𝑟𝑎𝑑/𝑠 
𝐶𝐷 𝐵𝐶 0. 45 



 

 

 

 

3.8 Velocity Of A Point On A Link By Instantaneous Centre 

Method 

 The instantaneous centre method of analyzing the motion in a mechanism is based 

upon the concept that any displacement of a body (or a rigid link) having motion in 

one plane, can be considered as a pure rotational motion of a rigid link as a whole 

about some centre, known as instantaneous centre or virtual centre of rotation.
 

Fig. 3.13 velocity of a point on a link 

 The velocities of points A and B, whose directions are given a link.by angles α and 

β as shown in Fig. If vA is known in magnitude and direction and vB in direction 

only, then the magnitude of vB may be determined by the instantaneous centre 

method as discussed below :

 Draw AI and BI perpendiculars to the directions vA and vB respectively. Let these 

lines intersect at I, which is known as instantaneous centre or virtual centre of the 

link. The complete rigid link is to rotate or turn about the centre I.

 Since A and B are the points on a rigid link, therefore there cannot be any relative 

motion between them along line AB.

 Now resolving the velocities along AB,
𝑣𝐴 × cos 𝑎 = 𝑣𝐵 × cos Q 

𝑣𝐴 
= 

cos Q 
=  

sin(90 − Q) ................................... 
(i)

 

𝑣𝐵 cos𝑎 sin(90 − 𝑎) 

 Applying Lami’s theorem to triangle ABI,
𝐴𝐼 

=
 

sin(90 − Q) 

𝐵𝐼 
 

 

sin(90 − 𝑎) 

 

 Hence,

𝐴𝐼 
=

 

𝐵𝐼 

sin(90 −  Q) .................................................... 
(ii)

 

sin(90 − 𝑎) 

𝑣𝐴 
= 

𝐴𝐼 

𝑣𝐵 𝐵𝐼 



 

 

 

𝑣𝐴 
 

 

𝐴𝐼 
= 

𝑣𝐵 = 𝑚 ................................................... (iii) 
𝐵𝐼 

 If C is any other point on link, then
𝑣𝐴 = 

𝑣𝐵 = 
𝑣𝐶 ...................................................................... (i𝑣) 

𝐴𝐼 𝐵𝐼 𝐶𝐼 

3.9 Properties Of Instantaneous Method 

 The following properties of instantaneous centre are important :
1 A rigid link rotates instantaneously relative to another link at the 

instantaneous centre for the configuration of the mechanism considered. 

2 The two rigid links have no linear velocity relative to each other at the 

instantaneous centre. At this point (i.e. instantaneous centre), the two rigid 

links have the same linear velocity relative to the third rigid link. In other 

words, the velocity of the instantaneous centre relative to any third rigid link 

will be same whether the instantaneous centre is regarded as a point on the 

first rigid link or on the second rigid link 

3.10 Number Of Instantaneous Centre In A Mechanism: 

 The number of instantaneous centres in a constrained kinematic chain is equal to 

the number of possible combinations of two links. The number of pairs of links or 

the number 3 of instantaneous centres is the number of combinations of n links
taken two at a time. Mathematically, number of instantaneous centres 

𝑁 = 
𝑛 (𝑛 − 1)

, wℎ𝑒𝑟𝑒 𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿i𝑛𝑘 
2 

3.11 Location of Instantaneous centres: 

 The following rules may be used in locating the instantaneous centres in a 

mechanism :
1 When the two links are connected by a pin joint (or pivot joint), the 

instantaneous centre lies on the centre of the pin as shown in Fig. (a). such an 

instantaneous centre is of permanent nature, but if one of the links is fixed, 

the instantaneous centre will be of fixed type. 

2 When the two links have a pure rolling contact (i.e. link 2 rolls without 

slipping upon the fixed link 1 which may be straight or curved), the 

instantaneous centre lies on their point of contact, as shown in Fig.(b). The 

velocity of any point A on the link 2 relative to fixed link 1 will be 

perpendicular to I12 A and is proportional to I12 A. 

3 When the two links have a sliding contact, the instantaneous centre lies on 

the common normal at the point of contact. We shall consider the following 

three cases : 

a. When the link 2 (slider) moves on fixed link 1 having straight surface as 

shown in Fig.(c), the instantaneous centre lies at infinity and each point on 

the slider have the same velocity. 



 

 

 

 

b. When the link 2 (slider) moves on fixed link 1 having curved surface as shown 

in Fig.(d),the instantaneous centre lies on the centre of curvature of the 

curvilinear path in the configuration at that instant. 

c. When the link 2 (slider) moves on fixed link 1 having constant radius of 

curvature as shown in Fig. 6.6 (e), the instantaneous centre lies at the centre 

of curvature i.e. the centre of the circle, for all configuration of the links. 

 

 
Fig. 3.14 Location of Instantaneous centres 

 

3.12 Kennedy’s Theorem 

 The Aronhold Kennedy’s theorem states that “if three bodies move relatively to each 

other, they have three instantaneous centres and lie on a straight line.”

 Consider three kinematic links A , B and C having relative plane motion. The number 

of instantaneous centres (N) is given by

𝑁 = 
𝑛 (𝑛 − 1) 

= 
3 (3 − 1) 

= 3
 

2 2 

 The two instantaneous centres at the pin joints of B with A , and C with A (i.e. Iab and 

Iac) are the permanent instantaneous centre According to Aronhold Kennedy’s 

theorem, the third instantaneous centre Ibc must lie on the line joining Iab and Iac. In 

order to prove this let us consider that the instantaneous centre Ibc lies outside the 

line joining Iab and Iac as shown in Fig. The point Ibc belongs to both the links B and C. 

Let us consider the point Ibc on the link B. Its velocity vBC must be perpendicular to 

the line joining Iab and Ibc. Now consider the point Ibc on the link C. Its velocity vBC 

must be perpendicular to the line joining Iac and Ibc.



 

 

 

 
 

 

Fig. 3.15 Aronhold Kennedy’s theorem 

 We have already discussed that the velocity of the instantaneous centre is same 

whether it is regarded as a point on the first link or as a point on the second link. 

Therefore, the velocity of the point Ibc cannot be perpendicular to both lines Iab Ibc 

and Iac Ibc unless the point Ibc lies on the line joining the points Iab and Iac. Thus the 

three instantaneous centres (Iab, Iac and Ibc) must lie on the same straight line. The 

exact location of Ibc on line Iab Iac depends upon the directions and magnitudes of 

the angular velocities of B and C relative to A.

3.13 Acceleration Diagram for a Link 

 Consider two points A and B on a rigid link as shown in Fig. (a). Let the point B moves 

with respect to A, with an angular velocity of ω rad/s and let α rad/s2 be the angular 

acceleration of the link AB.

 

Fig. 3.16 Acceleration of a link 

 We have already discussed that acceleration of a particle whose velocity changes 

both in magnitude and direction at any instant has the following two components.
1 The centripetal or radial component, which is perpendicular to the velocity of the 

particle at the given instant. 

2 The tangential component, which is parallel to the velocity of the particle at the 

given instant. 



 

 

 

𝐵𝐴 

𝐵𝐴 

𝐵𝐴 

𝐵𝐴 

 

 Thus for a link A B, the velocity of point B with respect to A (i.e. vBA) is perpendicular 

to the link A B as shown in Fig.(a). Since the point B moves with respect to A with an

angular velocity of ω rad/s, therefore centripetal or radial component of the 

acceleration of B with respect to A 

𝑎𝑟 = 𝑚2 × 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙i𝑛𝑘 𝐴𝐵 = 𝑚2 × 𝐴𝐵 = 𝑣2 
𝐵𝐴⁄𝐴𝐵

 

 This radial component of acceleration acts perpendicular to the velocity vBA, In 

other words, it acts parallel to the link AB.
We know that tangential component of the acceleration of B with respect to A , 

𝑎𝑡 = 𝑎 × 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙i𝑛𝑘 𝐴𝐵 = 𝑎 × 𝐴𝐵 

 This tangential component of acceleration acts parallel to the velocity vBA. In other 

words, it acts perpendicular to the link AB.

 In order to draw the acceleration diagram for a link A B, as shown in Fig. 8.1 (b), from 

any point b', draw vector b'x parallel to BA to represent the radial component of 

acceleration of B with respect to A.

3.14 Acceleration of a Point on a Link 

 Consider two points A and B on the rigid link, as shown in Fig. (a). Let the 

acceleration of the point A i.e. aA is known in magnitude and direction and the 

direction of path of B is given. The acceleration of the point B is determined in 

magnitude and direction by drawing the acceleration diagram as discussed below.
 
 

Fig. 3.17 acceleration of a point on a link 

 From any point o', draw vector o'a' parallel to the direction of absolute acceleration 

at point A i.e. aA , to some suitable scale, as shown in Fig. 8.2 (b).

 We know that the acceleration of B with respect to A i.e. aBA has the following two 

components:

 
1 Radial component of the acceleration of B with respect to A i.e. 𝑎𝑟 

2 Tangential component of the acceleration B with respect to A i.e. 𝑎𝑡 



 

 

 

𝐵𝑂 𝐵𝑂 

 

 Draw vector a’x parallel to the link AB such that,
𝑣𝑒𝑐𝑡𝑜𝑟 𝑎′𝗑 =  𝑎𝑟 = 𝑣2 ⁄𝐴𝐵 

𝐵𝐴 𝐵𝐴 

 From point x, draw vector xb’ perpendicular to AB or vector a’x and through o’ draw 

a line parallel to the path of B to represent the absolute acceleration of B i.e. aB

 By joining the points a' and b' we may determine the total acceleration of B with 

respect to A i.e. aBA. The vector a' b' is known as acceleration image of the link AB.

 For any other point C on the link, draw triangle a' b' c' similar to triangle ABC. Now 

vector b' c' represents the acceleration of C with respect to B i.e. a CB, and vector a' c' 

represents the acceleration of C with respect to A i.e. aCA. As discussed above, aCB
and aCA will each have two components as follows : 

a. aCB has two components; 𝑎𝑟 and 𝑎𝑡 as shown by triangle b’zc’ in fig.b 
𝐶𝐵 𝐶𝐵 

b. aCA has two components; 𝑎𝑟     and 𝑎𝑡 as shown by triangle a’yc’ 
𝐶𝐴 𝐶𝐴 

 The angular acceleration of the link AB is obtained by dividing the tangential 

component of acceleration of B with respect to A to the length of the link.
𝑎𝐴𝐵 =  𝑎𝐵

𝑡 
𝐴⁄𝐴𝐵 

3.15 Acceleration in Slider Crank Mechanism 

 A slider crank mechanism is shown in Fig. 8.3 (a). Let the crank OB makes an angle θ
with the inner dead centre (I.D.C) and rotates in a clockwise direction about the fixed 

point O with uniform angular velocity ωBO rad/s 

 Velocity of B with respect to O or velocity of B (because O is a fixed point),
𝑣𝐵𝑂 = 𝑣𝐵 = 𝑚𝐵𝑂 × 𝑂𝐵 𝑎𝑐𝑡i𝑛𝑔 𝑡𝑎𝑛𝑔𝑒𝑛𝑡i𝑎𝑙𝑙𝑦 𝑎𝑡 𝐵 

 We know that centripetal or radial acceleration of B with respect to O or 

acceleration of B (Because O is a fixed point)

𝑎𝑟 = 𝑎𝐵 =  𝑚2     × 𝑂𝐵 = 
2 
𝐵𝑂 

𝐵𝑂 

 

Fig. 3.18 acceleration in the slider crank mechanism 

 The acceleration diagram, as shown in Fig. 8.3 (b), may now be drawn as discussed 

below:

𝑣 



 

 

 

 

1 Draw vector o' b' parallel to BO and set off equal in magnitude of a=a, to some 

BO suitable scale. 

2 From point b', draw vector b'x parallel to BA. The vector b'x represents the radial 

component of the acceleration of A with respect to B whose magnitude is given 

by : 
𝑎𝑟 = 𝑣2 ⁄𝐵𝐴 
𝐴𝐵 𝐴𝐵 

3 From point x, draw vector xa’ perpendicular to b’x. The vector xa’ represents the 

tangential components of the acceleration of A with respect to B. 

4 Since the point A reciprocates along AO, therefore the acceleration must be 

parallel to velocity. Therefore from o', draw o' a' parallel to A O, intersecting the 

vector xa' at a'. 

5 The vector b' a', which is the sum of the vectors b' x and x a', represents the total 

acceleration of A with respect to B i.e. aAB. The vector b'a' represents the 

acceleration of the connecting rod AB. 

6 The acceleration of any other point on A B such as E may be obtained by dividing 

the vector b' a' at e' in the same ratio as E divides A B in Fig. 8.3 (a). In other 

words 

𝑎′𝑒′⁄𝑎′𝑏′ = 𝐴𝐸⁄𝐴𝐵 

7 The angular acceleration of the connecting rod A B may be obtained by dividing 

the tangential component of the acceleration of A with respect to B to the length 

of AB. In other words, angular acceleration of AB, 

𝑎𝐴𝐵 =  𝑎𝐴𝑡 𝐵⁄𝐴𝐵 

3.16 Examples Based on Acceleration 
3.16.1 The crank of the slider crank mechanism rotates clockwise at a constant speed 

of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. 

Determine : 

1. Linear velocity and acceleration of the midpoint of the connecting rod, and 

2. Angular velocity and angular acceleration of the connecting rod, at a crank 

angle of 45° from inner dead centre position 

 Given:

 NBO = 300 r.p.m. or ωBO = 2 π × 300/60 = 31.42 rad/s; OB = 150 mm = 0.15 m ; B A 

= 600 mm = 0.6 m 

 We know that linear velocity of B with respect to O or velocity of B,
𝑣𝐵𝑂 = 𝑣𝐵 = 𝜔𝐵𝑂 × 𝑂𝐵 = 31.42 × 0.15 = 4.713 𝑚/𝑠 

 Draw vector ob perpendicular to BO, to some suitable scale, to represent the 

velocity of B with respect to O or simply velocity of B i.e. vBO or vB, such that

vector ob = vBO = vB = 4.713 m/s 



 

 

 

AB 

𝐵 

 
 

 

 
Fig. 3.19 

 From point b, draw vector ba perpendicular to BA to represent the velocity of A 

with respect to B i.e. vAB , and from point o draw vector oa parallel to the motion 

of A (which is along AO) to represent the velocity of A i.e. vA. The vectors ba and 

oa intersect at a.

 By measurement we find the velocity A with respect to B,

𝑣𝐴𝐵 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑎 = 3.4 𝑚/𝑠 

𝑣𝐴 = vector oa = 4 m/s 

 In order to find the velocity of the midpoint D of the connecting rod A B, divide 

the vector ba at d in the same ratio as D divides A B, in the space diagram. In 

other words,

𝑏𝑑⁄𝑏𝑎 = 𝐵𝐷⁄𝐵𝐴 

 By measurement, we find that

vD = vector od = 4.1 m/s 

 We know that the radial component of the acceleration of B with respect to O or 

the acceleration of B,

𝑎2 = 𝑎𝐵 = 𝑣2 
𝐵𝑂 = (4.713) 

2 = 148.1 𝑚/𝑠2 
𝐵𝑂 𝑂𝐵    

0.15 
 And the radial component of the acceleration of A with respect to B,

 

𝑎𝑟 𝑣2 

= 𝐴𝐵 = (3.4) 
2 

 
= 19.3 𝑚/𝑠2 

𝐴 𝐵𝐴    

0.6 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑜′𝑏′  =  𝑎𝐵𝑟 𝑂  = 𝑎𝐵   = 148.1 𝑚/𝑠2
 

 By measurement, we find that

𝑎𝐷 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜′𝑑′ = 117 𝑚/𝑠2 

 We know that angular velocity of the connecting rod AB,

𝜔𝐴𝐵 
= 

𝑣𝐴𝐵 

𝐵𝐴 

3.4 
= = 5.67 𝑟𝑎𝑑⁄𝑠2 

0.6 
 From the acceleration diagram, we find that

at = 103 m⁄s2 

 We know that angular acceleration of the connecting rod AB,



 

 

 

 

 
𝛼𝐴𝐵 = 

𝑎𝑡 
𝐴𝐵 = 

𝐵𝐴 

103 
 

 

0.6 

 
= 171.67 𝑟𝑎𝑑⁄𝑠2 

3.16.2 An engine mechanism is shown in Fig. 8.5. The crank CB = 100 mm and the 

connecting rod BA = 300 mm with centre of gravity G, 100 mm from B. In the 

position shown, the crankshaft has a speed of 75 rad/s and an angular acceleration 

of 1200 rad/s2. Find: 

1. Velocity of G and angular velocity of AB, and 

2. Acceleration of G and angular acceleration of AB. 
 

 

 
 Given:

Fig. 3.20 

 ωBC = 75 rad/s ; αBC = 1200 rad/s2, CB = 100 mm = 0.1 m; B A = 300 mm = 0.3 m 

 We know that velocity of B with respect to C or velocity of B

vBC = vB = ωBC × CB = 75 × 0.1 = 7.5 m/s 

 Since the angular acceleration of the crankshaft, αBC = 1200 rad/s2, therefore 

tangential component of the acceleration of B with respect to C,
𝑎𝑡 = 𝛼𝐵 × 𝐶𝐵 = 1200 × 0.1 = 120 𝑚⁄𝑠2 

𝐵𝐶 
𝐶 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑏 = 𝑣𝐵𝐶 = 𝑣𝐵 = 7.5 
𝑠

 

 By measurement, we find that velocity of G,

𝑣𝐺 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑔 = 6.8 𝑚/𝑠 

 From velocity diagram, we find that the velocity of A with respect to B,

𝑣𝐴𝐵 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑎 = 4 𝑚/𝑠 
 

 

 
 We know that angular velocity of AB,

Fig. 3.21 

𝜔𝐴𝐵 
= 

𝑣𝐴𝐵 = 
𝐵𝐴 

4 
 

 

0.3 
= 13.3 𝑟𝑎𝑑/𝑠 

𝑚 



 

 
 

     

𝑣 

𝐵𝐶 

𝐵𝐶 

𝐴𝐵 

𝐴𝐵 

= 
𝐶 

𝐵 

 

 

Fig. 3.22 

 We know that radial component of the acceleration of B with respect to C

𝑣2 
𝑟 𝐵𝐶 = 
𝐵 𝐶𝐵 

(7.5)2 
 

 

0.1 
= 562.5 𝑚⁄𝑠2 

 And radial component of the acceleration of A with respect to B,

𝑎𝑟 
2 

= 𝐴   = (4) 
2 = 53.3 𝑚⁄𝑠2 

𝐴 𝐶𝐵    

0.3 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑐′𝑏′′  =  𝑎𝑟 = 562.5 𝑚/𝑠2 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏′′𝑏′ = 𝑎𝑡 = 120 𝑚/𝑠2 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑏′𝑥 =  𝑎𝑟 = 53.3 𝑚/𝑠2 

 By measurement we find that acceleration of G,

𝑎𝐺 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥𝑎′ = 414 𝑚/𝑠2 

 From   acceleration diagram, we find that tangential component of the 

acceleration of A with respect to B,

𝑎𝑡 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥𝑎′ = 546 𝑚/𝑠2 

 Angular acceleration of AB

𝛼𝐴𝐵 = 
𝑎𝑡 

𝐴𝐵 = 
𝐵𝐴 

546 
 

 

0.3 
= 1820 𝑟𝑎𝑑/𝑠2 

 

3.16.3 In the mechanism shown in Fig. 8.7, the slider C is moving to the right with a 

velocity of 1 m/s and an acceleration of 2.5 m/s2.The dimensions of various links are 

AB = 3 m inclined at 45° with the vertical and BC = 1.5 m inclined at 45° with the 

horizontal. Determine: 1. the magnitude of vertical and horizontal component of the 

acceleration of the point B, and 2. the angular acceleration of the links AB and BC. 

 Given: 

 vC = 1 m/s ; aC = 2.5 m/s2; AB = 3 m ; BC = 1.5 m 

 Here, 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑑𝑐 = 𝑣𝐶𝐷 = 𝑣𝑐 = 1𝑚/𝑠 

 By measurement, we find that velocity of B with respect to A 

𝑣𝐵𝐴 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑎𝑏 = 0.72 𝑚/𝑠 

   Velocity of B with respect to C  

𝑎 



 

 

𝐵𝐴 

𝐵𝐴 

𝐵𝐶 

= 
𝐶 

= 
𝐴 

 

𝑣𝐵𝐶 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑏 = 0.72 𝑚/𝑠 

 We know that radial component of acceleration of B with respect to C, 

𝑣2 
𝑟 𝐵𝐶 = 
𝐵 𝐶𝐵 

(0.72)2 
 

 

1.5 
= 0.346 𝑚/𝑠2 

 And radial component of acceleration of B with respect to A, 

𝑣2 
𝑟 𝐵𝐴 = 
𝐵 𝐴𝐵 

(0.72)2 
 

 

3 
= 0.173 𝑚/𝑠2 

 
 

 
 By measurement, 

𝑣𝑒𝑐𝑡𝑟𝑜 𝑑′𝑐′  = 𝑎𝑐𝑑 = 𝑎𝑐 = 2.𝑚5 𝑚/𝑠2 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑐′𝑥 = 𝑎𝑟 = 0.346    
𝐵𝐶 

𝑠2 

𝑣𝑒𝑐𝑡𝑜𝑟 𝑎′𝑦 = 𝑎𝑟 = 0.173 𝑚/𝑠2 

 
𝑣𝑒𝑐𝑡𝑜𝑟 𝑏′𝑏′′ = 1.13 𝑚/𝑠2 

 By measurement from acceleration diagram, we find that tangential component 

of acceleration of the point B with respect to A 

𝑎𝑡 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑦𝑏′ = 1.41 𝑚/𝑠2 

 And tangential component of acceleration of the point B with respect to C, 

𝑎𝑡 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥𝑏′ = 1.94 𝑚/𝑠2 

 we know that angular velocity of AB, 
𝑣𝑡 

𝛼𝐴𝐵 = 

 And aglular acceleration of BC, 

𝐵𝐴 = 0.47 𝑟𝑎𝑑/𝑠2 
 

𝐴𝐵 

𝛼𝐵𝐶 = 
𝑎𝑡 

𝐵𝐶 = 
𝐶𝐵 

1.94 
 

 

1.5 
𝑟𝑎𝑑/𝑠2 

𝑎 

𝑎 
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4.1 Straight Line Mechanisms 

 It permits only relative motion of an oscillatory nature along a straight line. The 

mechanisms used for this purpose are called straight line mechanisms. 

1 In which only turning pairs are used 

2 In which one sliding pair is used. 

 These two types of mechanisms may produce exact straight line motion or 

approximate straight line motion. 

 Need of Straight Line: 

1 Sewing Machine converts rotary motion to up/down motion. 

2 Want to constrain pistons to move only in a straight line. 

3 How do you create the first straight edge in the world? (Compass is easy) 

4 Windshield wipers, some flexible lamps made of solid pieces connected by 

flexible joints. 

 

4.2 Exact Straight Line Motion Mechanisms Made Up Of Turning 

Pairs 

 The principle adopted for a mathematically correct or exact straight line motion is 

described in Fig.4.1 

  Let O be a point on the circumference of a circle of diameter OP. Let OA be any 

chord and B is a point on OA produced, such that 

OA × OB = constant 

 The triangles OAP and OBQ are similar. 
 
 

Fig. 4.1 Exact straight line motion mechanism 
 

𝑂𝐴 
=

 

𝑂𝑃 

𝑂𝑄 
 

 

𝑂𝐵 



 

 

 

𝑂𝑃 × 𝑂𝑄 = 𝑂𝐴 × 𝑂𝐵 

𝑂𝐴 × 𝑂𝐵 
𝑂𝑄 = 

𝑂𝑃
 

 But OP is constant as it is the diameter of a circle; therefore, if OA × OB is constant, 

then OQ will be constant. 

 Hence 

𝑂𝐴 × 𝑂𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 So point B moves along the straight line. 

 

4.3 Peaucellier Mechanism (Exact Straight Line) 

 It consists of a fixed link OO1 and the other straight links O1A, OC, OD, AD, DB, BC 

and CA are connected by turning pairs at their intersections, as shown in Fig. 4.2 

 The pin at A is constrained to move along the circumference of a circle with the fixed 

diameter OP, by means of the link O1A. In Fig. 4.2 

 AC = CB = BD = DA 

 OC = OD 

 OO1 = O1A 
 

Fig. 4.2 Peaucellier Mechanism 

 From right angled triangles ORC and BRC, we have 

𝑂𝐶 2 = 𝑂𝑅2 + 𝑅𝐶 2 (I) 

𝐵𝐶 2 = 𝑅𝐵2 + 𝑅𝐶 2 (ii) 

 From (i) and (ii) 
 

𝑂𝐶 2 − 𝐵𝐶 2 = 𝑂𝑅2 − 𝑅𝐵2 

= (𝑂𝑅 − 𝑅𝐵)(𝑂𝑅 + 𝑅𝐵) 



 

 

 

= 𝑂𝐵 × 𝑂𝐴 

 Since OC and BC are of constant length, therefore the product OB × OA remains 

constant. 

 

4.4 Hart’s Mechanism 

 This mechanism requires only six links as compared with the eight links required by 

the Peaucellier mechanism. 

 It consists of a fixed link OO1 and other straight links O1A, FC, CD, DE and EF are 

connected by turning pairs at their points of intersection, as shown in Fig. 4.3. 

 The links FC and DE are equal in length and the lengths of the links CD and EF are 

also equal. The points O, A and B divide the links FC, CD and EF in the same ratio. A 

little consideration will show that BOCE is a trapezium and OA and OB are 

respectively parallel to FD and CE. 
 

 

 
 Here, FC = DE & CD = EF 

Fig. 4.3 Hart’s Mechanism 

 The point O, A and B divide the links FC, CD and EF in the same ratio. 

 From similar triangles CFE and OFB, 

𝐶𝐸 
=

 

𝐹𝐶 

𝑂𝐵 
 

 

𝑂𝐹 
or CB =   

𝐶𝐸 × 𝑂𝐹 
… …(i) 

𝐹𝐶 
 From similar triangle FCD and OCA 

 
 

 From above equations, 

𝐹𝐷 
=

 

𝐹𝐶 

𝑂𝐴 
 

 

𝑂𝐶 
𝑜𝑟 𝑂𝐴 = 

𝐹𝐷 × 𝑂𝐶 

𝐹𝐶 
… . (ii) 

𝑂𝐴 × 𝑂𝐵 = 
𝐹𝐷 × 𝑂𝐶

 
𝐹𝐶 

× 
𝐶𝐸 × 𝑂𝐹 

𝐹𝐶 

= 𝐹𝐷 × 𝐶𝐸 × 
𝑂𝐶 × 𝑂𝐹

 
𝐹𝐶2 

 Since the lengths of OC, OF and FC are fixed, therefore 

𝑂𝐴 × 𝑂𝐵 = 𝐹𝐷 × 𝐶𝐸 × 𝑐𝑜𝑛𝑠. … (iii) 

 From point E, draw EM parallel to CF and EN perpendicular to FD. 



 

 

 

𝐹𝐷 × 𝐶𝐸 = 𝐹𝐷 × 𝐹𝑀 (𝐶𝐸 = 𝐹𝑀) 

= (𝐹𝑁 + 𝑁𝐷)(𝐹𝑁 − 𝑀𝑁) 

= 𝐹𝑁2 − 𝑁𝐷2 (MN = ND) 

= (𝐹𝐸2 − 𝑁𝐸2) − (𝐸𝐷2 − 𝑁𝐸2) (From right 

angle triangles FEN and EDN) 

 
 From equation (iii) and (iv), 

 
= 𝐹𝐸2 − 𝐸𝐷2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (i𝑣) 

 
𝑂𝐴 × 𝑂𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

4.5 Exact Straight Line Motion consisting of one sliding pair-Scott 

Russell’s Mechanism 

 A is the middle point of PQ and OA = AP = AQ. The instantaneous center for the link 

PAQ lies at I in OA produced and is such that IP is perpendicular to OP. 
 
 
 

Fig. 4.4 Scott Russell’s Mechanism 

 Join IQ. Then Q moves along the perpendicular to IQ. Since OPIQ is a rectangle and 

IQ is perpendicular to OQ, therefore Q moves along the vertical line OQ for all 

positions of QP. Hence Q traces the straight line OQ′. 

 If OA makes one complete revolution, then P will oscillate along the line OP through 

a distance 2 OA on each side of O and Q will oscillate along OQ′ through the same 

distance 2 OA above and below O. Thus, the locus of Q is a copy of the locus of P. 



 

 

 

4.6 Approximate straight line motion mechanisms 

4.6.1 Watt’s Mechanism 

 It has four links as shown in fig. OB, O1A, AB and OO1. 

 

Fig. 4.5 watt’s mechanism 

  OB and O1A oscillates about centers O and O1 respectively. P is a point on AB 

such that, 

𝑂1𝐴 
=   

𝑃𝐵 

𝑂𝐵 𝑃𝐴 
 As OB oscillates the point P will describe an approximate straight line. 

 
4.6.2 Modified Scott-Russel Mechanism 

 This is similar to Scott-Russel mechanism but in this case AP is not equal to AQ 

and the points P and Q are constrained to move in the horizontal and vertical 

directions. 
 

Fig. 4.6 Modified Scott-Russel Mechanisms 



 

 

 

 A little consideration will show that it forms an elliptical trammel, so that any 

point A on PQ traces an ellipse with semi-major axis AQ and semi minor axis AP. 

 If the point A moves in a circle, then for point Q to move along an approximate 

straight line, the length OA must be equal (AP)2 / AQ. This is limited to only small 

displacement of P. 

 

4.6.3 Grasshopper Mechanism 

 In this mechanism, the centers O and O1 are fixed. The link OA oscillates about O 

through an angle AOA1 which causes the pin P to move along a circular arc with 

O1 as center and O1P as radius. 
 
 

 

Fig. 4.7 Grasshopper Mechanism 

 For small angular displacements of OP on each side of the horizontal, the point Q 

on the extension of the link PA traces out an approximately a straight path QQ′. if 

the lengths are such that 

𝑂𝐴 = 
𝐴𝑃2

 

𝐴𝑄 

 
4.6.4 Tchebicheff’s Mechanism 

 It is a four bar mechanism in which the crossed links OA and O1B are of equal 

length, as shown in Fig. 4.8. 

 The point P, which is the mid-point of AB, traces out an approximately straight 

line parallel to OO1. 



 

 

 

 The proportions of the links are, usually, such that point P is exactly above O or 

O1 in the extreme positions of the mechanism i.e. when BA lies along OA or 

when BA lies along BO1. 
 

Fig. 4.8 Tchebicheff’s mechanism 

 It may be noted that the point P will lie on a straight line parallel to OO1, in the 

two extreme positions and in the mid position, if the lengths of the links are in 

proportions 

AB: OO1 : OA = 1 : 2 : 2.5. 

4.6.5 Roberts Mechanism 

 It is also a four bar chain mechanism, which, in its mean position, has the form of 

a trapezium. The links OA and O1 B are of equal length and OO1 is fixed. A bar PQ 

is rigidly attached to the link AB at its middle point P. 
 

Fig. 4.9 Robert’s Mechanism 



 

 

 

 A little consideration will show that if the mechanism is displaced as shown by 

the dotted lines in Fig. the point Q will trace out an approximately straight line. 

 

4.7 Steering gear mechanism 

 The steering gear mechanism is used for changing the direction of two or more of 

the wheel axles with reference to the chassis, so as to move the automobile in any 

desired path. 

 Usually the two back wheels have a common axis, which is fixed in direction with 

reference to the chassis and the steering is done by means of the front wheels. 

 In automobiles, the front wheels are placed over the front axles, which are pivoted 

at the points A and B, as shown in Fig. 4.10. 

 

 

 

Fig. 4.10 steering gear mechanism 

 
 These points are fixed to the chassis. The back wheels are placed over the back axle, 

at the two ends of the differential tube. When the vehicle takes a turn, the front 

wheels along with the respective axles turn about the respective pivoted points. The 

back wheels remain straight and do not turn. Therefore, the steering is done by 

means of front wheels only. 

 In order to avoid skidding (i.e. slipping of the wheels sideways), the two front wheels 

must turn about the same instantaneous centre I which lies on the axis of the back 

wheels. If the instantaneous centre of the two front wheels do not coincide with the 

instantaneous Centre of the back wheels, the skidding on the front or back wheels 

will definitely take place, which will cause more wear and tear of the tyres 



 

 

 

 Thus, the condition for correct steering is that all the four wheels must turn about 

the same instantaneous centre. The axis of the inner wheel makes a larger turning 

angle θ than the angle φ subtended by the axis of outer wheel. 

 Let,    a = wheel track 

b = wheel base 

c = Distance between the pivots A and B of the front axle. 

 Now from triangle IBP, 

cot𝜃 = 
𝐵𝑃

 
𝐼𝑃 

 

 And from triangle IAP, 

 
cot ∅ −  cot 𝜃 =  

𝑐
 

 

cot ∅ = 
𝐴𝑃 

= 
𝐼𝑃 

𝐴𝐵 + 𝐵𝑃 
=

 

𝐼𝑃 

𝑐 
+ cot 𝜃 

𝑏 

𝑏 
 This is the fundamental equation for correct steering. 

 
4.8 Devis Steering Mechanism 

 The Davis steering gear is shown in Fig. 9.16. It is an exact steering gear mechanism. 

The slotted links AM and BH are attached to the front wheel axle, which turn on 

pivots A and B respectively. 

 The rod CD is constrained to move in the direction of its length, by the sliding 

members at P and Q. These constraints are connected to the slotted link AM and BH 

by a sliding and a turning pair at each end. The steering is affected by moving CD to 

the right or left of its normal position. C ′D′ shows the position of CD for turning to 

the left. 
 

 

Fig. 4.11 Devis steering gear mechanism 



 

 

 

 

 Let,  

a = Vertical distance between AB and CD, 

b = Wheel base, 

d = Horizontal distance between AC and BD, 

c = Distance between the pivots A and B of the front axle. 

x = Distance moved by AC to AC ′ = CC ′ = DD′, and 

α = Angle of inclination of the links AC and BD, to the vertical. 
 

 From triangle AA’C ′ 

 
 

 From triangle AA’C 

 
 

tan(α + ∅) = 

 
A′C′ 

= 
A′A′ 

 
d + x ............................... 

(i)
 

a 

 
 

 From triangle BB’D’ 

tan 𝛼 = 
𝐴′𝐶 

=
 

𝐴′𝐴′ 

𝑑 .................................... 
(ii) 

𝑎 

tan(𝛼 − 𝜃) = 

 We know that, 

𝐵′𝐷′ 
=

 

𝐵𝐵′ 

𝑑 −𝑥 ....................................... 
(iii) 

𝑎 

tan(𝛼 + ∅) = 
tan 𝛼 + tan ∅ 

 
 

1 − tan 𝛼 × tan ∅ 

𝑑 + 𝑥 
= 

𝑑⁄𝑎 + tan ∅ 
 

 = 
𝑑 + (𝑎  × tan ∅) 

 
 

𝑎 1 − 𝑑⁄𝑎 × tan∅ 𝑎 − (𝑑 × tan ∅) 

𝑑 ∙ 𝑥 × (𝑎 − 𝑑 × tan ∅) = 𝑎 × (𝑑 + 𝑎 × tan ∅) 

𝑎 ∙ 𝑑 − 𝑑2 × tan ∅ + 𝑎 ∙ 𝑥 − 𝑑 × 𝑥 × tan ∅ = 𝑎 ∙ 𝑑 +  𝑎2 × tan ∅ 
tan ∅ × (𝑎2 + 𝑑2 + 𝑑 ∙ 𝑥) = 𝑎 ∙ 𝑥 

𝑎 ∙ 𝑥 
tan ∅ = 

(𝑎2 + 𝑑2 + 𝑑 ∙ 𝑥) ................................. 
(i𝑣)

 
 

 Similarly from tan(𝛼 − 𝜃) = 𝑑−𝑥 
𝑎 

, we get 
𝑎 ∙ 𝑥 

tan 𝜃 = 
(𝑎2 + 𝑑2 − 𝑑 ∙ 𝑥) ................................ 

(𝑣)
 

 We know that for correct steering, 

cot∅ − cot𝜃 =   
𝑐

 
𝑏 

(𝑎2 + 𝑑2  + 𝑑 ∙ 𝑥) 
 

 

(𝑎2 + 𝑑2 − 𝑑 ∙ 𝑥) 
= 

𝑐 
 

𝑎 ∙ 𝑥 
−

 
2 𝑑 

= 
𝑐 

𝑎 𝑏 

𝑎 ∙ 𝑥 𝑏 

2 tan 𝛼 = 
𝑐 

 
 

𝑐
𝑏 

tan 𝛼 =     
2 𝑏 



 

 

 

4.9 Ackerman steering Gear 

 The Ackerman steering gear mechanism is much simpler than Davis gear. The 

difference between the Ackerman and Davis steering gears are : 

1 The whole mechanism of the Ackerman steering gear is on back of the front 
wheels; 
whereas in Davis steering gear, it is in front of the wheels. 

2 The Ackerman steering gear consists of turning pairs, whereas Davis 
steering gear consists of sliding members. 

 
Fig. 4.12 Ackerman steering mechanism 

 

 In Ackerman steering gear, the mechanism ABCD is a four bar crank chain, as shown 

in Fig. 4.12. The shorter links BC and A D are of equal length and are connected by 

hinge joints with front wheel axles. The longer links A B and CD are of unequal 

length. 

 The following are the only three positions for correct steering. 

1 When the vehicle moves along a straight path, the longer links A B and CD are 
parallel and the shorter links BC and AD are equally inclined to the 
longitudinal axis of the vehicle, as shown by firm lines in Fig. 4.12. 

2 When the vehicle is steering to the left, the position of the gear is shown by 
dotted lines in Fig. 4.12. In this position, the lines of the front wheel axle 
intersect on the back wheel axle at I, for correct steering. 

3 When the vehicle is steering to the right, the similar position may be obtained. 

 
4.10 Universal or Hooke’s Joint 

 A Hooke’s joint is used to connect two shafts, which are intersecting at a small angle, 

as shown in Fig.4.10. The end of each shaft is forked to U-type and each fork 

provides two bearings for the arms of a cross. 

 The arms of the cross are perpendicular to each other. The motion is transmitted 

from the driving shaft to driven shaft through a cross. 



 

 

 
 
 

 
 

Fig. 4.13 Hooke’s Joint 

 The main application of the Universal or Hooke’s joint is found in the transmission 

from the gear box to the differential or back axle of the automobiles. It is also used 

for transmission of power to different spindles of multiple drilling machines. 

 

4.11 Ratio of shaft velocities 

 The top and front views connecting the two shafts by a universal joint are shown in 

Fig. 4.11. Let the initial position of the cross be such that both arms lie in the plane of 

the paper in front view, while the arm AB attached to the driving shaft lies in the 

plane containing the axes of the two shafts. 

 Let the driving shaft rotates through an angle θ, so that the arm AB moves in a circle 

to a new position A1 B1 as shown in front view. 

 A little consideration will show that the arm CD will also move in a circle of the same 

size. This circle when projected in the plane of paper appears to be an ellipse. 

Therefore the arm CD takes new position C1D1 on the ellipse, at an angle θ. But the 

true angle must be on the circular path. 

 To find the true angle, project the point C1 horizontally to intersect the circle at C2. 

Therefore the angle COC2 (equal to φ) is the true angle turned by the driven shaft. 



 

 

 
 

 
 

Fig. 4.14 ration of shaft velocities 

 In triangle OC1M, angle OC1M = Ɵ 

tan 𝜃 = 

 In triangle OC2N, angle OC2N = Ø 

𝑂𝑀 ................... 
(i)

 

𝑀𝐶1 

 

 Dividing eq. (i) by (ii) 

tan ∅ = 𝑂𝑁 
𝑁𝐶2 

 
tan ∅ = 𝑂𝑁 

𝑁𝐶2 

= 𝑂𝑁 … … . . (ii) (NC2 = MC1) 
𝑀𝐶1 

 
=   𝑂𝑁 

𝑀𝐶1 

 

 But  

𝑂𝑀 = 𝑂𝑁1 cos 𝛼 = 𝑂𝑁 cos 𝛼 (α = angle of inclination of driving and driven 

shaft) 

tan 𝜃 
=

 

tan ∅ 

𝑂𝑁 cos 𝛼 

𝑂𝑁 
= cos 𝛼 

tan 𝜃 = tan ∅ × cos 𝛼 ............. (iii) 

 Let, 



 

 

 

 
 
 

 Differentiating both side of eq. (iii) 
𝑑𝜃 

𝑑𝜃 
ω = angular velocity of driving shaft =    

𝑑𝑡 

ω1 = angular velocity of driven shaft = 
𝑑∅

 

𝑑𝑡 

 
𝑑∅ 

sec2 𝜃 × = cos 𝛼   × sec2 ∅ ×      
𝑑𝑡 𝑑𝑡 

sec2 𝜃 × 𝜔 =   cos 𝛼   × sec2 ∅   × 𝜔1 

 
 
 

 
 We know that, 

𝜔1 
=

 

𝜔 

= 

sec2 𝜃 
 

 

cos 𝛼 × sec2 ∅ 
1 

cos2 𝜃 × cos 𝛼 × sec2 ∅ 

 
tan2 𝜃 

 
 

… … . (i𝑣) 

sec2 ∅ = 1 + tan2 ∅ = 1 + 
 

 

cos2 𝛼 

= 1 + 
sin2 𝜃 

 
 

cos2 𝜃 ×   cos2 𝛼 

= 
cos2 𝜃 × cos2 𝛼 + sin2 𝜃 

cos2 𝜃 × cos2 𝛼 

= 
cos2 𝜃  × (1 − sin2 𝛼) + sin2 𝜃 

cos2 𝜃 × cos2 𝛼 

= 
cos2 𝜃 − sin2 𝛼 × cos2 𝜃 + sin2 𝜃 

cos2 𝜃 × cos2 𝛼 

= 
1 − sin2 𝛼 × cos2 𝜃 

cos2 𝜃 × cos2 𝛼 
 Substituting this value in eq. (iv) 

𝜔1 
= 

1 
 

 
cos2 𝜃 ×   cos2 𝛼 

× 
 

𝜔 cos2 𝜃   × cos 𝛼 1 − sin2 𝛼 × cos2 𝜃 

 

4.12 Maximum and Minimum speed of Driven Shaft 

 
𝜔1 

= 
cos 𝛼 

  

𝜔 
 

𝜔1 = 

1 −   sin2 𝛼 × cos2 𝜃 

𝜔 × cos 𝛼 
 

 

1 − sin2 𝛼 × cos2 𝜃 

 

… … … … … … …… (i) 

 The value of ω1 will be minimum for a given value of α, if the denominator of eq. (I) 

is minimum. 

cos2 𝜃 = 1, i.e. Ɵ = 0⁰, 180⁰, 360⁰ etc. 

 Maximum speed of the driven shaft, 

𝜔1(max) 

𝜔 cos 𝛼 
= = 

1 − sin2 𝛼 

𝜔 × cos 𝛼 

cos2 𝛼 

𝜔 
= 

cos 𝛼 



 

 

 

𝑁1(max) 
=     𝑁  

cos 𝛼 

 Similarly, the value of ω1 is minimum , if the denominator of eq. (i) is maximum, this 

will happen, when (sin2 𝛼 × cos2 𝜃) is maximum, or 

cos2 𝜃 = 0, i.e. Ɵ = 90⁰, 270⁰ etc. 

 
4.13 Polar diagram – salient features of driven shaft speed 

 For one complete revolution of the driven shaft, there are two points i.e. at 0° and 

180° as shown by points 1 and 2 in Fig. Where the speed of the driven shaft is 

maximum and there are two points i.e. at 90° and 270° as shown by point 3 and 4 

where the speed of the driven shaft is minimum. 
 
 
 

Fig. 4.15 polar diagram 

 Since there are two maximum and two minimum speeds of the driven shaft, 

therefore there are four points when the speeds of the driven and driver shaft are 

same. This is shown by points, 5, 6, 7 and 8 in Fig. 

 Since the angular velocity of the driving shaft is usually constant, therefore it is 

represented by a circle of radius ω. The driven shaft has a variation in angular 

velocity, the maximum value being ω/cos α and minimum value is ω cos α. Thus it is 

represented by an ellipse of semi-major axis ω/cos α and semi-minor axis ω cos α, as 

shown in Fig.4.15. 

 

4.14 Double Hooke’s Joint 

 The velocity of the driven shaft is not constant, but varies from maximum to 

minimum values. In order to have a constant velocity ratio of the driving and driven 

shafts, an intermediate shaft with a Hooke’s joint at each end as shown in Fig. , is 

used. This type of joint is known as double Hooke’s joint. 



 

 

 
 

 
 

 
 For shaft A and B, 

 
 For shaft B and C, 

Fig. 4.16 double Hooke’s joint 

tan 𝜃 = tan ∅ × cos 𝛼 

tan 𝛾 = tan ∅ × cos 𝛼 

 This shows that the speed of the driving and driven shaft is constant. In other words, 

this joint gives a velocity ratio equal to unity, if 

1 The axes of the driving and driven shafts are in the same plane, and 

2 The driving and driven shafts make equal angles with the intermediate shaft. 

 

4.15 Examples: 

1. In a Davis steering gear, the distance between the pivots of the front axle is 1.2 

metres and the wheel base is 4.7 metres. Find the inclination of the track arm 

to the longitudinal axis of the car, when it is moving along a straight path . 

 Given: c = 1.2 m ; b = 4.7 m 

 Let, α = Inclination of the track arm to the longitudinal axis. 

 We know that 

tan 𝛼 = 
𝐶   

= 
2 𝑏 

𝛼 = 14.5° 

1.2 
 

 

2 × 4.7 
= 0.222 

 

2. Two shafts with an included angle of 160° are connected by a Hooke’s joint. 

The driving shaft runs at a uniform speed of 1500 r.p.m. The driven shaft carries 

a flywheel of mass 12 kg and 100 mm radius of gyration. Find the maximum 

angular acceleration of the driven shaft and the maximum torque required . 
 

 Given: N = 1500 rpm ; m = 12 kg; k = 100 mm ; α = 20⁰ 

 We know that angular speed of driving shaft, 

𝜔 = 2 𝜋 
1500 

= 157 
𝑟𝑎𝑑

 
60 𝑠 

 

 The mass moment of inertia of the driven shaft, 

𝐼 = 𝑚 × 𝐾2 = 12 × 0.12 = 0.12 𝑘𝑔. 𝑚2 



 

 

 

 Max. angular acceleration of driven shaft, 
sin2 𝛼 × 2 sin2 20 × 2 

cos 2𝜃 = 
 

 

2 − sin2 𝛼 
= 

2 − sin2 20 
= 0.124 

𝜃 = 41.45° 

𝑑𝜔1 
= 

𝜔2 × cos 𝛼   × sin 2𝜃 × sin2 𝛼 

𝑑𝑡 (1 − sin2 𝛼 × cos2 𝜃)
2

 

1572  × cos 20 × sin 84.9 × sin2 20 𝑟𝑎𝑑 
= 2 = 3090 

(1 − sin2 20 × cos2 44.45) 

 
 

𝑠2 

 

 Max torque req. 

= 𝐼 × 
𝑑𝜔1 = 0.12 × 3090 = 371 𝑁. 𝑚 

𝑑𝑡 
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5.1 Introduction 
 If power transmitted between two shafts is small, motion between them may be 

obtained by using two plain cylinders or discs 1 and 2 as shown in fig.

 If there is no slip of one surface relative to the other, a definite motion of 1 can be 

transmitted to 2 and vice-versa. Such wheels are termed as “friction wheels”. 

However, as the power transmitted increases, slip occurs between the discs and the 

motion no longer remains definite.

 Assuming no slipping of the two surfaces, the following kinematic relationship exists 

for their linear velocity:

 To transmit a definite motion of one disc to the other or to prevent slip between the 

surfaces, projection and recesses on the two discs can be made which can mesh with 

each other. This leads to formation of teeth on the discs and the motion between 

the surfaces changes from rolling to sliding. The discs with the teeth are known as 

gears or gear wheels.

 It is to be noted that if the disc I rotates in the clockwise direction, 2 rotates in the 

counter clockwise direction and vice-versa.

 
Fig. 5.1 

 
5.2 Advantages and Disadvantages of Gear Drive 

Advantages 

1. It transmits exact velocity ratio. 

2. It may be used to transmit large power. 

3. It has high efficiency. 

4. It has reliable service. 

5. It has compact layout. 

Disadvantages 

1. The manufacture of gears required special tools and equipment. 

2. The error in cutting teeth may cause vibrations and noise during operation. 

3. They are costly. 



 

 

 

 

5.3 Classification of Gears 

5.3.1. According to the position of axes of the shafts 

A. The axes of the two shafts between which the motion is to be transmitted, may 

be Parallel shaft, 

B. Intersecting (Non parallel) shaft 

C. Non-intersecting and non-parallel shaft. 

 
A. Parallel shaft 

 Spur gear 

 The two parallel and co-planar shafts connected by the gears are called spur 

gears. These gears have teeth parallel to the axis of the wheel. 

 They have straight teeth parallel to the axes and thus are not subjected to axial 

thrust due to tooth load. 

 At the time of engagement of the two gears, the contact extends across the 

entire width on a line parallel to the axis of rotation. This results in sudden 

application of the load, high impact stresses and excessive noise at high speeds. 

 If the gears have external teeth on the outer surface of the cylinders, the shaft 

rotate in the opposite direction. 

 In an internal spur gear, teeth are formed on the inner surface of an annulus ring. 

An internal gear can mesh with an external pinion (smaller gear) only and the 

two shafts rotate in the same direction. 
 
 

Fig.5.3 (a) Spur Gear 

 
 Spur rack and pinion 

 Spur rack is a special case of a spur gear where it is made of infinite diameter so 

that the pitch surface is plane. 

 The spur rack and pinion combination converts rotary motion into translator 

motion, or vice-versa. 

 It is used in a lathe in which the rack transmits motion to the saddle. 



 

 

 

 

Fig. 5.3(b) Rack and pinion 

 
 Helical Spur Gears 

 In helical gears, the teeth are curved, each being helical in shape. Two mating 

gears have the same helix angle, but have teeth of opposite hands. 

 At the beginning of engagement, contact occurs only at the point of leading edge 

of the curved teeth. As the gears rotate, the contact extends along a diagonal 

line across the teeth. Thus, the load application is gradual which results in low 

impact stresses and reduction in noise. Therefore, the helical gear can be used at 

higher velocities than the spur gears and have greater load-carrying capacity. 

 Helical gears have the disadvantage of having end thrust as there is a force 

component along the gear axis. The bearing and assemblies mounting the helical 

gears must be able to withstand thrust loads. 

 Double helical: A double-helical gear is equivalent to a pair of helical gears 

secured together, one having a right hand helix and other left hand helix. 

 The teeth of two rows are separated by groove used for tool run out. 

 Axial thrust which occurs in case of single-helical gears is eliminated in 

double-helical gears. 

 This is because the axial thrusts of the two rows of teeth cancel each 

other out. These can be run at high speeds with less noise and vibrations. 

 Herringbone gear: If the left and the right inclinations of a double-helical gear 

meet at a common apex and there is no groove in between, the gear is known as 

Herringbone gear. 

  

Helical gear Herringbone gear 

(c) (d) 

Fig. 5.3 



 

 

 

 

B. Intersecting Shafts 

 The two non-parallel or intersecting, but coplanar shafts connected by gears are 

called bevel gears 

 When teeth formed on the cones are straight, the gears are known as bevel 

gears when inclined, they are known as spiral or helical bevel. 

 

 Straight Bevel Gears ( http://www.bevelgear.co.za) 
 The teeth are straight, radial to the point of intersection of the shaft axes and 

vary in cross section throughout their length. 

 Usually, they are used to connect shafts at right angles which run at low speeds 

  Gears of the same size and connecting two shafts at right angles to each other 

are known as “Mitre” gears. 

Fig. 5.3(e) Straight Bevel Gears 

 
 Spiral Bevel Gears 

 When the teeth of a bevel gear are inclined at an angle to the face of the bevel, 

they are known as spiral bevels or helical bevels. 

 They are smoother in action and quieter than straight tooth bevels as there is 

gradual load application and low impact stresses. Of course, there exists an axial 

thrust calling for stronger bearings and supporting assemblies. 

 These are used for the drive to the differential of an automobile. 



 

 

 

 
 

 
 Zero Bevel Gears 

Fig. 5.3(f) Spiral Bevel Gear 

 Spiral bevel gears with curved teeth but with a zero degree spiral angle are 

known as zero bevel gears. 

 Their tooth action and the end thrust are the same as that of straight bevel gears 

and, therefore, can be used in the same mountings. 

 However, they are quieter in action than the straight bevel type as the teeth are 

curved. 
 
 

Fig. 5.3(g) Zero Bevel Gears 

 
C. Non-intersecting and non-parallel shaft(Skew shaft) 

 The two non-intersecting and non-parallel i.e. non-coplanar shaft connected by 

gears are called skew bevel gears or spiral gears and the arrangement is known 

as skew bevel gearing or spiral gearing. 

 In these gears teeth have a point contact. 

 These gears are suitable for transmitting small power. 

 Worm gear is as special case of a spiral gear in which the larger wheel, usually, 

has a hollow shape such that a portion of the pitch diameter of the other gear is 

enveloped on it. 



 

 

 
 

 

Fig.5.3 (h)Non-intersecting and non-parallel shaft 
 

 
5.3.2. According to the peripheral velocity of the gears 
(a) Low velocity V < 3 m/sec 

(b) Medium velocity 3 < V < 15 m/sec 

(c) High velocity V > 15 m/sec 
 

5.3.3. According to position of teeth on the gear surface 
(a) Straight, 

(b) Inclined, and 

(c) Curved. 
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5.4 Terms Used in Gears 
 

 

Fig.5.4 Terms used in gears. 

 
1. Pitch circle. It is an imaginary circle which by pure rolling action, would give the same 

motion as the actual gear. 

 
2. Pitch circle diameter. It is the diameter of the pitch circle. The size of the gear is usually 

specified by the pitch circle diameter. It is also known as pitch diameter. 

 
3. Pitch point. It is a common point of contact between two pitch circles. 

 
4. Pitch surface. It is the surface of the rolling discs which the meshing gears have replaced 

at the pitch circle. 

 
5. Pressure angle or angle of obliquity. It is the angle between the common normal to two 

gear teeth at the point of contact and the common tangent at the pitch point. 

 For more power transmission lesser pressure on the bearing and pressure angle 

must be kept small. 

 It is usually denoted by ø. 

 The standard pressure angles are 20° and 25°.Gears with 14 1 ° pressure angle has 

become obsolete. 

 
6. Addendum. It is the radial distance of a tooth from the pitch circle to the top of the tooth. 

 Standard value = 1 module 



 

 

 

7. Dedendum. It is the radial distance of a tooth from the pitch circle to the bottom of the 

tooth. 

 Standard value = 1.157 module 

 
8. Addendum circle. It is the circle drawn through the top of the teeth and is concentric with 

the pitch circle. 

 
9. Dedendum circle. It is the circle drawn through the bottom of the teeth. It is also called 

root circle. 

 
10. Clearance. It is the radial difference between the addendum and the Dedendum of a 

tooth. 

Addendum circle diameter d 2m 

Dedendum circle diameter 

Clearance  1.157mm 

0.157m 

 d21.157m 

 

11. Full depth of Teeth It is the total radial depth of the tooth space. 

Full depth= Addendum + Dedendum 

 
12. Working Depth of Teeth The maximum depth to which a tooth penetrates into the 

tooth space of the mating gear is the working depth of teeth. 

 Working depth = Sum of addendums of the two gears. 

 
15. Working depth. It is the radial distance from the addendum circle to the clearance circle. 

It is equal to the sum of the addendum of the two meshing gears. 

 
16. Tooth thickness. It is the width of the tooth measured along the pitch circle. 

 
17. Tooth space. It is the width of space between the two adjacent teeth measured along 

the pitch circle. 

 
18. Backlash. It is the difference between the tooth space and the tooth thickness, as 

measured along the pitch circle. Theoretically, the backlash should be zero, but in actual 

practice some backlash must be allowed to prevent jamming of the teeth due to tooth 

errors and thermal expansion. 

 
19. Face of tooth. It is the surface of the gear tooth above the pitch surface. 

20. Flank of tooth. It is the surface of the gear tooth below the pitch surface. 

21. Top land. It is the surface of the top of the tooth. 

22. Face width. It is the width of the gear tooth measured parallel to its axis. 



 

 

 

20. Fillet It is the curved portion of the tooth flank at the root circle. 

 
21. Circular pitch. It is the distance measured on the circumference of the pitch circle from 

point of one tooth to the corresponding point on the next tooth. 

 It is usually denoted by pc .

Mathematically, 
d 

Circular pitch, pc 
T 

Whered = Diameter of the pitch circle, and 

T = Number of teeth on the wheel. 

 The angle subtended by the circular pitch at the center of the pitch circle is known as 

the pitch angle.

 
22. Module (m). It is the ratio of the pitch diameter in mm to the number of teeth. 

m  
d

 
T 
d 

Also   pc    m 
T 

 Pitch of two mating gear must be same.

 
23. Diametral Pitch (P) It is the number of teeth per unit length of the pitch circle diameter 

in inch. 

OR 

It is the ratio of no. of teeth to pitch circle diameter in inch. 

P  
T

 
d d 

 The recommended series of modules in Indian Standard are 1, 1.25, 1.5, 2, 2.5, 3, 4, 

5, 6, 8, 10, 12, 16, and 20. The modules 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 

9, 11, 14 and 18 are of second choice.

 
24. Gear Ratio (G). It is the ratio of the number of teeth on the gear to that on the pinion. 

G  
T

 

t 
Where T= No of teeth on gear 

 

t = No. of teeth on pinion 

 

25. Velocity Ratio (VR) The velocity ratio is defined as the ratio of the angular velocity of the 

follower to the angular velocity of the driving gear. 
 

VR 
2   

N2   
d1   

T1 

    

1 N1 d2 T2 



 

 

 

26. Length of the path of contact. It is the length of the common normal cut-off by the 

Addendum circles of the wheel and pinion. 

OR 

The locus of the point of contact of two mating teeth from the beginning of engagement to 

the end of engagement is known as the contact. 

 
a. Path of Approach Portion of the path of contact from the beginning of the 

engagement to the pitch point. 

b. Path of Recess Portion of the path of contact from the pitch point to the end 

of engagement. 

 
27. Arc of Contact The locus of a point on the pitch circle from the beginning to the end of 

engagement of two mating gears is known as the arc of contact. 

 
a. Arc of Approach It is the portion of the arc of contact from the beginning of 

engagement to the pitch point. 

b. Arc of Recess The portion of the arc of contact from the pitch point to the 

end of engagements the arc of recess. 

 
28. Angle of Action (ð) It is the angle turned by a gear from the beginning of engagement to 

the end of engagement of a pair of teeth, i.e., the angle turned by arcs of contact of 

respective gear wheels. 

   Where  =Angle of approach 

 =Angle of recess 

 
29. Contact ratio .It is the angle of action divided by the pitch angle 

  

Contact ratio  
 
 




OR 

 

Contact ratio  
Arcofcontact

 

Circularpitch 



 

 

 
 

 

 

5.5 Condition for Constant Velocity Ratio of Toothed Wheels –Law 

of Gearing 
– To understand the theory consider the portions of two gear teeth gear 1 and gear 2 as 

shown in figure 1.5. 

– The two teeth come in contact at point C and the direction of rotation of gear 1 is 

anticlockwise & gear 2 is clockwise. 

– Let TT be the common tangent & NN be the common normal to the curve at the point of 

contact C. From points O, &O2, draw O1 A & O2 B perpendicular to common normal NN. 

– When the point D is consider on gear 1, the point C moves in the direction of “CD” & 

when it is consider on gear 2. The point C moves in direction of “CE”. 

– The relative motion between tooth surfaces along the common normal NN must be equal 

to zero in order to avoid separation. 

– So, relative velocity 

V1 cos  V2 cos

1  O1 C cos  2  O2 C cos    r ............ (1) 
 

Fig.5.5 Law of gearing 



 

 



2 

 

– But from  O AC, cos  
O1 A 

1 

O1 C 

and from  O BC, cos  
O2 B 

2 

O2 C 

– Putting above value in equation (1) it become 

  O C 
O1 A 

   O C 
O2 B

 
  

1 1 O C 2 2 O C 
 

1 O1 A  2 O2 B 

1  
O2 B ................................................................................... 

(2)
 

  

 O1 A 
 

– From the similar triangle  O1 AP &  O2 BP 

O2 B  
 

O2 P ....................................................................... 
(3)

 

O1 A O1 P 

– Now equating equation (2) & (3) 

1 
 

O2 B 
 

O2 P 
 

PB 

2 O1 A O1 P AP 

– From the above we can conclude that the angular velocity ratio is inversely proportional 

to the ratio of the distances of the point P from the central O1& O2. 

– If it is desired that the angular velocities of two gear remain constant, the common 

normal at the point of contact of two teeth always pass through a fixed point P. This 

fundamental condition is called as law of gearing. Which must be satisfied while 

designing the profiles of teeth for gears. 

 
 

5.6 Standard Tooth Profiles or Systems 
 

Following four types of tooth profiles or systems are commonly used in practice for 

interchangeability: 

a)   14 
1

 

2 

b)   14 
1

 

2 

composite system. 

 
full depth involute system. 

c) 20 full depth involute system. 

d) 20 stub involute system. 
 

a) 14 
1

 

2 

 

composite system: 

1 2 



 

 

 

 This type of profile is made with circular arcs at top and bottom portion and middle 

portion is a straight line as shown in Fig. 1.6(a). 

 The straight portion corresponds to the involute profile and the circular arc portion 

corresponds to the cycloidal profile. 

 Such profiles are used for general purpose gears. 
 

 

 

Fig.5.6(a) 14 
1

 

2 

 

composite system 

b) 14 
1

 

2 
full depth involute system: 

 This type of profile is made straight line except for the fillet arcs. 

 The whole profile corresponds to the involute profile. Therefore manufacturing of such 

profile is easy but they have interface problem. 
 
 

 

Fig.5.6(b) 14 
1

 

2 

 
full depth involute system 

c) 20 full depth involute system: 

 This type of profile is same as 14 
1

 

2 

 
 

full depth involute system except the pressure angle. 



 

 

 

 The increase of pressure angle from 14 
1

 

2 

 

to 20 results in a stronger tooth, since the 

tooth acting as a beam is wider at the base. 

 This type of gears also have interference problem if number of teeth is less. 
 

 
Fig.5.6(c) 20 full depth involute system 

 
d) 20 stub involute system: 

 

 The problem of interference in 20 full depth involute system is minimized by removing 

extra addendum of gear tooth which causes interference. 

 Such modified tooth profile is called “Stub tooth profile”. 

 This type of gears are used for heavy load. 

 

 

Fig.5.6(d) 20 stub involute system 



 

[Type here]  

 

5.7 Length of Path of Contact And Length of Arc of Contact 
 

5.7.1 Length of Path of Contact 

Fig.5.7 Length of path of contact 

 When the pinion rotates in clockwise direction, the contact between a pair of 

involute teeth begins at K (on the flank near the base circle of pinion or the outer 

end of the tooth face on the wheel) and ends at L (on the flank near the base circle 

of wheel).

 MN is the common normal at the point of contacts and the common tangent to the 

base circles.

 The point K is the intersection of the addendum circle of wheel and the common 

tangent.

 The point L is the intersection of the addendum circle of pinion and common 

tangent.

 Length of path of contact is the length of common normal cutoff by the addendum 

circles of the wheel and the pinion.

 Thus the length of path of contact is KL which is the sum of the parts of the path of 

contacts KP and PL. The part of the path of contact KP is known as path of approach 

and the part of the path of contact PL is known as path of recess.

L.P.C KL 

KPPL 

Where, KP = path of approach 

PL = path of recess 



 

103  

O K2 O N2 
2 2 

R  Rcos ø 2 
A  

2 

 

Let  
R = O2P = pitch circle radius of wheel 

RA = O2K = addendum circle radius of wheel 

r = O1P = pitch circle radius of pinion 

rA = O1L = addendum circle radius of pinion 

 

Length of the path of contact = Path of approach + path of recess 
 

=KP  PL 

 

 KNPN  ML MP



  PN 

  Rsinø 




MP





rsinø




5.7.2 Length of Arc of Contact 
 The arc of contact is the path traced by a point on the pitch circle from the beginning 

to the end of engagement of a given pair of teeth.

 The arc of contact is EPF or GPH.

 Considering the arc of contact GPH, it is divided into two parts i.e. arc GP and arc PH. 

The arc GP is known as arc of approach and the arc PH is called arc of recess.

 The angles subtended by these arcs at O1 are called angle of approach and angle of 

recess respectively.

 

Length of the arc of contact GPH  GP  PH


 Arc of approach Arc of recess 

 


 KP 


  PL   

cos ø cos ø 

 


 KP  PL  

coscos ø 

 

 
KL 

cos ø 

O L2 O M2 
1 1 

r  rcos ø 2 
A  

2 



 

 

 

 
Length of path of contact 

cos ø 

Contact Ratio (or Number of Pairs of Teeth in Contact) 
 The contact ratio or the number of pairs of teeth in contact is defined as the ratio of 

the length of the arc of contact to the circular pitch.

 
Mathematically, 

Contact ratio or number of pairs of teeth in contact 

 

 
Length of arc of contact 

Circular pitch 
 

 
Length of arc of contact 

π m 
Note: 

 For continuous transmission of the motion, at least one tooth of any one wheel must 

be in contact with another tooth of second wheel so ‘n’ must be greater than unity.

 If ‘n’ lies between 1& 2, no. of teeth in contact at any time will not be less than one 

and will never mate two.

 If ‘n’ lies between 2 & 3,it is never less than two pair of teeth and not more than 

three pairs and so on.

 If ‘n’ is 1.6, one pair of teeth are always in contact where as two pair of teeth are in 

contact for 60% of the time

 

5.8 Interference in Involute Gears 
 

Fig.5.8 Interference in involute gears 



 

 

 

 Fig. shows a pinion with centerO1, in mesh with wheel or gear with centreO2. MN is 

the common tangent to the base circles and KL is the path of contact between the 

two mating teeth.

 A little consideration will show that if the radius of the addendum circle of pinion is 

increased to O1N, the point of contact L will move from L to N. When this radius is 

further increased, the point of contact L will be on the inside of base circle of wheel 

and not on the involute profile of tooth on wheel. The tip of tooth on the pinion will 

then undercut the tooth on the wheel at the root and remove part of the involute 

profile of tooth on the wheel. This effect is known as interference, and occurs when 

the teeth are being cut. In brief, the phenomenon when the tip of tooth undercuts 

the root on its mating gear is known as interference.

 
 Similarly, if the radius of the addendum circles of the wheel increases beyond O2M, 

then the tip of tooth on wheel will cause interference with the tooth on pinion.

 The points M and N are called interference points. Interference may be avoided if 

the path of contact does not extend beyond interference points. The limiting value 

of the radius of the addendum circle of the pinion is O1N and of the wheel is O2M.

 

How to avoid interference? 

 
 The interference may only be avoided, if the point of contact between the two teeth 

is always on the involute profiles of both the teeth. 

OR 

 Interference may only be prevented, if the addendum circles of the two mating gears 

cut the common tangent to the base circles between the points of tangency. 

 
 When interference is just avoided, the maximum length of path of contact is MN 

Maximum length of path of contact  MN 

 
 MP  PN 

 

 r sinø Rsinø 

 
 r  Rsinø 

 

 
 
 

Note: 

 
Maximum length of arc of contact 

r Rsinø 

cosø 

In case the addenda on pinion and wheel is such that the path of approach and path of 

recess are half of their maximum possible values, then 



 

 

KP = MP 





1 1 1 

 

 Path of approach, 
1

 

2 

Rsinø  
1

rsinø 

2 

 Path of recess, 




PL  

1 
PN 

2 
 

rsinø  
1

Rsinø 

2 
 

 

 Length of the path of contact KPPL 

 
1 

MP  
1

PN 
2 2 

 

 
r  Rsinø 

2 

 

5.9 Minimum Number of Teeth on the Pinion in Order to Avoid 

Interference 
 In order to avoid interference, the addendum circles for the two mating gears must 

cut the common tangent to the base circles between the points of tangency.

 The limiting condition reaches, when the addendum circles of pinion and wheel pass 

through points N and M (see Fig.) respectively.

 
Let t = Number of teeth on the pinion, 

T = Number of teeth on the wheel, 

m = Module of the teeth, 

r = Pitch circle radius of pinion = mt / 2 

G = Gear ratio = T / t = R / r 

ø = Pressure angle or angle of obliquity. 

 

 

From ∆ O1NP,  
O N2 

 O P2 
PN2 

 2OPPNcosO PN

R  Rcos ø 2 
A  

2 

r  rcos ø 2 
A  

2 





 

 

1 
T  T 
t 
 

t 
 2 sin ø 

 2 





1 
T 
t 
 

t 
T 


 2 sin ø 




2 



1  
T  T 

 
2 

t  t 
 2sin ø 



1 

1 

1 







O N2 r2 

 
O N2 r2 

 

O N2 r2 R2 sin2 ø  2rRsin2 ø 
 

 2 2  R2 sin2 ø 2Rsin2 ø

O1N r 1  r2 

 r 



 2 2  R2 sin2 ø 2Rsin2 ø
O1N r 1 



O N2  2 





r2 

 
R  R 

r 




1 r 1    2sin

2 
ø

 r  r  




O1N  r 

 
O N  

mt
 

1 

2 
 
 

 
Let Ap m= Addendum of the pinion, where AP is a fraction by which the standard 

addendum of one module for the pinion should be multiplied in order to avoid 

interference. 

 
Addendum of the pinion  O1N– O1P 

 

A .m  
mt 

 
mt 

P 

2 2 

 

A .m  
mt 

 
mt 

P 

 
 

A .m 

2 2 

mt       
 1 

P  
2  

1 
R  R 
r 
 

r 
 2 sin ø 

 2 





1 
R  R 
r 
 

r 
 2 sin ø 

 2 





 Rsi nø
2  
2rRsi nøc os90  ø

 

Rsi 

nø
2  
2rRsi nøc os90  ø

 



 

 

1  
T  T 

 
2 

t  t 
 2sin ø 








A .m mt       

 1 
P  

2  

t       A .  1  
T  T 

 
 2  1

P 
2


t  t 

2sin ø 
 

t       A  1  
T  T 

 
 2  1

P 
2


t  t 

2sin ø 
 

t       A  1  
T  T 

 
 2  1



P 
 
 
 

 

t 


2






t  t 

 
2AP 

T  T 

2sin ø 

 




 1    2sin 

2 
ø  1

 t  t  



t 




Note: 

 
 If the pinion and wheel have equal teeth, then G = 1.

 
t 





Min. no of teeth on pinion 
 

 

Sr. 

no 
System of gear teeth Min. no of teeth on pinion 

1 14 1 ° Composite 
2 

12 

2 14 1 °Full depth involute 
2 

32 

3 20° Full depth involute 18 

4 20°Stub involute 14 

   




2AP 

1  GG 2sin2 ø  1






2AP 

1  3sin2 ø  1




 

 

1 
T 
 

T 
t  t 

 2 sin ø 
 2 





2 

2 2 2 2 

2 



 

5.10 Minimum Number of Teeth on the Wheel in Order to Avoid 

Interference 

Let T = Minimum number of teeth required on the wheel in order to avoid 

interference, 

Aw m= Addendum of the wheel, where AW is a fraction by which the standard 

Addendum for the wheel should be multiplied. 

 

From ∆O2MP 
 

O M2 
 O P2 

PM2 
 2O PPMcosO PM



O M2 R2  rsinø
2  
 2rRsinøcos90  ø


O M2 R2 r2 sin2 ø  2rRsin2 ø 

 2 2  r2 sin2 ø 2rsin2 ø
O2M  R 1  

 R2 R 





O M2 R2 1  
r  r 

 
 2    

2   2sin ø

 R  R  




O2M  R 

 
O M  

mT
 

2 

2 
 

 
Addendum of the wheel  O2M – O2P 

 

A m  
mT 

 
mT 

w 

2 2 

mT       
A m 

w 
2 

 1




1  
t  t 

 
2 

T  T 
 2sin ø 



1 
R 
 

R 
r  r 

 2 sin ø 
 2 





1 
R 
 

R 
r r 


 2 sin ø 




2 





 

 

1  
t  t 

 
2 

T  T 
 2sin ø 








1 
1  1  

G G 
  2sin 2 ø  1

 



w 


A m mT       

 1 
w  

2  

T       
A  1  

t  t 
 

 2  1


w 
 
 
 

 

T 


2


T  T 

 
2Aw 

2sin ø 

 








T  
2Aw

 

 
 

 
Note: 

 From the above equation, we may also obtain the minimum number of teeth on 

pinion. Multiplying both sides by t/T, 
 
 

 
T  

t
 

2A   
t 

 T  
 

T  1  1  
 1    2sin 2 ø  1

 G G  



t  
2Aw

 
 1  1  

G  1    2sin 2 ø  1

 G G  




 If wheel and pinion have equal teeth, then G = 1, 

 

T 






1 
t  t 

T  T 
  2sin 2 ø  1

 

 




2Aw 

1  3sin2 ø  1




 

 

R 



5.11 Minimum Number of Teeth on a Pinion for Involute Rack in 

Order to Avoid Interference 
 
 
 

 
Fig.5.11 Rack and pinion in mesh 

 
Let t = Minimum number of teeth on the pinion, 

m t 
r = Pitch circle radius of the pinion = and 

2 
ø= Pressure angle or angle of obliquity, and 

AR m= Addendum for rack, where AR is the fraction by which the standard 

addendum of one module for the rack is to be multiplied. 

 
 

Addendum for rack, AR  m  LH 

 
AR  m  PL sin 


AR  m r sin φsin φ 

 
A  m r sin2φ 

 

 
AR  m 



mt sin2φ 

2 



 

 

1 
R  R 
r 
 

r 
 2 sin ø 

 2 





1  GG  2sin2 ø 

2 

 p 

 

 
 

Note: 

t  
2AR

 

sin2 φ 

 In case of pinion, max. value of addendum radius to avoid interference if AF 

 
 O M2  AF2 

 
 rcos ø

2  
 Rsinø  rsinø

2
 

 Max value of addendum of pinion is 
 
 

A 
max 

r  1 

 

 
mt  1

2  



5.12 Comparison of Cycloidal and Involute tooth forms 
 

 

Cycloidal teeth Involute teeth 

Pressure angle varies from maximum at 

the beginning of engagement, reduce to 

zero at the pitch point and again increase 

to maximum at the end of the engagement 

resulting in smooth running of gears. 

Pressure angle is constant throughout the 

engagement of teeth. This result in smooth 

running of the gears. 

It involves double curves for the teeth, 

epicycloid and hypocycloid. This 

complicates the manufacturer. 

It involves the single curves for the teeth 

resulting in simplicity of manufacturing 

and of tool 

Owing to difficulty of manufacturer, these 

are costlier 

These are simple to manufacture and thus 

are cheaper. 

Exact center distance is required to 

transmit a constant velocity ratio. 

A little variation in a centre distance does 

not affect the velocity ratio. 

Phenomenon of interference does not 

occur at all. 

Interference can occur if the condition of 

minimum no. of teeth on a gear is not 

followed. 

The teeth have spreading flanks and thus 

are stronger. 

The teeth have radial flanks and thus are 

weaker as compared to the Cycloidal form 

for the same pitch. 

In this a convex flank always has contact 

with a concave face resulting in less wear. 

Two convex surfaces are in contact and 

thus there is more wear. 



 

 

 

5.13 HELICAL AND SPIRAL GEARS 
 In helical and spiral gears, the teeth are inclined to the axis of a gear. They can be 

right handed or left-handed, depending upon the direction in which the helix slopes 

away from the viewer when a gear is viewed parallel to the axis of the gear.

 

 In Fig. Gear1 is a right-handed helical gear whereas 2 are left handed. The two 

mating gears have parallel axes and equal helix angle α OR . The contact between 

two teeth on the two gears is first made at one end which extends through the width 

of the wheel with the rotation of the gears.

 Figure (a) shows the same two gears when looking from above. Now, if the helix 

angle of the gear 2 is reduced by a few degrees so that the helix angle of the gear 1 is

1 , and that of gear 2 is 2 and it is desired that the teeth of the two gears still mesh 

with each other tangentially, it is essential to rotate the axis of gear 2 through some 

angle as shown in Fig. (b). 

 

 

Fig.5.13(a) Helical Gear 

 
 The following definitions may be clearly understood in connection with a helical gear 

as shown in Fig.

 
1. Normal pitch. It is the distance between similar faces of adjacent teeth, along a 

helix on the pitch cylinder normal to the teeth. It is denoted by pN. 

2. Axial pitch. It is the distance measured parallel to the axis, between similar faces 

of adjacent teeth. It is the same as circular pitch and is therefore denoted by pc. If α 

is the helix angle, then 

 

Circular pitch,pc  
pN 

Cos



Note: The helix angle is also known as spiral angle of the teeth. 



 

 

 

 

Efficiency of Spiral Gears 
 A pair of spiral gears 1 and 2 in mesh is shown in Fig. . Let the gear 1 be the driver 

and the gear 2 the driven. The forces acting on each of a pair of teeth in contact are 
shown in Fig.

 The forces are assumed to act at the center of the width of each teeth and in the 
plane tangential to the pitch cylinders

 

 

 
Fig.5.13 (b) 

Let F1 = Force applied tangentially on the driver, 

F2 = Resisting force acting tangentially on the driven, 

Fa1 = Axial or end thrust on the driver, 

Fa2 = Axial or end thrust on the driven, 

RN = Normal reaction at the point of contact 

 = Angle of friction, 

R = Resultant reaction at the point of contact, and 

 = Shaft angle =1 +2 

...( Both gears are of the same hand) 

 
From triangle OPQ, F1 = R cos1 



Work input to the driver = F1 d1 N1 Rcos1 d1 N1 

 
From triangle OST, F2 Rcos(2  ) 



 

 

1 

2 

 

 

Work output of the driven=F2 d2 N2 Rcos2  d2 N2 

 
Efficiency of spiral gears, 

  
Work output 

 
Rcos2  d2 N2  

Work input Rcos1  d1 N1 

 
cos2  d2 N2  

cos1  d1 N1 
 

Pitch circle diameter of gear 1, 

 
d  

pc1  T1    
pN  

T1 
   

1  Cos 


Pitch circle diameter of gear 2,  

d  
pc2  T2    

pN  
T2 

   

2  Cos 



 
d2  

T2Cos1 

d1 T1Cos2 

 

(2) 

 

N2  
T1 

N1 T2 

 
Multiplying equation (2) and (3) we get 

 
d2N2  

cos1 

d1N1 cos2 

 
 

Substituting this value in equation (1) 

 


 cos2  cos1   

cos1  cos2 

 

(3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(4) 

 

 
cos1  2    cos1  2  

cos1  2    cos1  2  



 

 

1 2 

1 2 

1 2 

1 2 2 1 



 
cos AcosB  

1 
cosA B  cosA B 




 2  
 

 
cos    cos1  2  

cos    cos    



(5) 
 

 

      

Since the angle  and  are constants, therefore the efficiency will be maximum, 

when cos     is maximum i.e. 

cos1  2   =1 

 
1 2    0 

 
      and    





Since 1  2  


          

therefore 

 
OR   

  


1 2 1 1 2 

 

 
Similarly   

  


2 2 

 

Substituting 1  2   and 2  1  in equation (5) we get 

 
 

  
cos    1 

max cos    1 



 

 

 
 

 

EXAMPLES 
 

Example 5.1: Two spur gears have a velocity ratio of 1/3 the driven gear has 72 teeth 

of 8 mm module and rotates at 300 rpm. Calculate the number of teeth and Speed 

of driver. What will be the pitch line velocity? 

Solution: 

Given data Find 

VR  1 / 3 Vp ? 

T2  72 teeth T1  ? 

m  8 mm 

N2  300 

VR  
N2  

T1
 

N1 T2 

 


1 
 

300 
 

T1 

3 N1 72 

 
T1  24 & N1  900 rpm 

 

 
Pitch line velocity 

 
 

VP  r11  r22 

 
2N1  

d1 

60 2 

 
2N1  

mT1 

60 2 

 
2 900 

 
8  24 

60 2 

 9047.78 mm / sec 



 

 

 

 
Example 5.2: The number of teeth of a spur gear is 30 and it rotates at 200 rpm. What will 

be its circular pitch and the pitch line velocity if it has a module of 2 mm? 

 

Solution: 

 
Given data Find: 

T  30 Pc ? 

N  200 rpm Vp ? 

m  2 mm 

 

Circular pitch Pc  m 

 2 

 6.28mm 

Pitch line velocity Vp  r 

 
2N

 
d 

60 2 
 

 
2200 

 
2 30 

60 2 

 628.3mm/ s 

 
Example 5.3: The following data relate to two meshing gears velocity ratio = 1/3, module = 

1mm, Pressure angle 20°, center distance= 200 mm. Determine the number of teeth and the 

base circle radius of the gear wheel. 

 

Solution: 

 
Given data Find: 

VR  1 / 3 T1  ? 

Ø  20 T2  ? 

C  200 mm Base circle radius of gear wheel  ? 

m  4 mm 

 

(1) VR  
N

2  
1 
 

T
1 

N1 3 T2 



 

 

 

T2  3T1 

Centre distance C  
d1  d2

 

2 

200  
m T1  T2 




(1) 

 

 

 
 

m  
d 



2 

 

200  
4T1  T2 

2 

 
T1 T2  100 

 
By solving equation (1) & (2) 

 

T1  25 

 
T2  75 

 
(2) No of teeth of gear wheel T2  75 

 

But  m  
d2

 

T2 








(2) 

2 





d2 mT2 

 
d2  300mm 

 

Base circle radiusdb2  
d2 cos 
2 

 

 
300 

cos20 
2 

 

 141mm 

Example 5.4: Each of the gears in a mesh has 48 teeth and a module of 8 mm. The teeth are 

of 20° involute profile. The arc of' contact is 2.25 times the circular pitch. Determine the 

addendum. 

Solution: 



 

 

R  Rcosø 2 
A  

2 
r  rcosø 2 

A  
2 

 

Given data Find: 

T  t  48 Addendum  ? 

m  8 mm 

ø  20

Arc of contact 

Arc of contact  2.25Pc 

2.25 Pc 

 

 2.25m 
 

 2.258 

 56.55mm 

 

Let m  
d 
 

2r
 

t T 
 

R  r  
mT 

 
8 48 

2 2 
 

R r  192mm 
 

Also Ra ra 

 

L.A.C 
 L.P.C  

COS



56.55 
 L.P.C  

 
COS20 

 
 

L.P.C  53.14mm 

( toothsizesame) 

 
 
 

L.P.C   Rsinø  rsinø

53.14  2    R  2  
 Rcoscosø

2    R+rsinø   R    r  

 A  A A 

53.14  2    R  2  
 192cos20

2    192  192sin20 

 A 



 

 

RA 
2   Rcosø

2 

RA   32551.73 
2 

Addendum 10.63mm 



53.14  2  R 2  32551.73 131.33 

 A 



  92.23mm 
 

RA  202.63mm 

Now RA R  Addendum 

Addendum RA R 
 

Example 5.5: Two involute gears in mesh have 20° pressure angle. The gear ratio is 3 and 

the number of teeth on the pinion is 24. The teeth have a module of 6 mm. The pitch line 

velocity is 1.5 m/s and the addendum equal to one module. Determine the angle of action 

of pinion (the angle turned by the pinion when one pair of teeth is in the mesh) and the 

maximum velocity of sliding. 

 
Solution: 

 
Given data Find: 

Ø  20 Angle of action of the pinion  ? 

G  T / t 

t  24 

m  6 mm 

 3 Max. velocity of sliding  ? 

Vp  1.5 m / s 

Addendum  1 module 
 
 

 

mt 624 
r     72mm 

2 2 

 T  24 3  72

mT 6 72 
R      216mm 

2 2 

 

ra r  Add.  72 (16)  78mm RA R  Add.  216 (16)  222mm 

 

 
Let the length of path of contact KL KPPL 

KP   Rsinø



 

 

r 


  72 216 





PL  





 16.04mm 

 
 

 




 14.18mm 

 

rsinø



Arcofcontact  
Pathofcontact 

cos

 
16.04  14.18 

cos20 

 32.16mm 
Lengthofarcofcontact360 

Angleturnedthroughbypinion() 




circumferenceofpinion 
 

 
32.16  360   

2 72 

 25.59 
 
 
 

Max.velocityofsliding (p  g )KP 

 
 V 

 
V 

KP 
 

 
 1500 

 
1500 16.04

 

 

 445.6mm/ sec 

 
 
V r



Example 5.6: Two involute gears in a mesh have a module of 8mm and pressure angle of 

20°. The larger gear has 57 while the pinion has 23 teeth. If the addendum on pinion and 

gear wheels are equal to one module, Determine 

i. Contact ratio(No. of pairs of teeth in contact ) 

ii. Angle of action of pinion and gear wheel 

222   216cos20  216sin20 2  
2 




r  rcosø 2 
A  2 

78   72cos20  72sin20 2  
2 










 

 

R - 
2 

A Rcosø 
2 

2362  - 228cos20o 
2

 

= o 

 

iii. Ratio of sliding to rolling velocity at the 

a. Beginning of the contact. 

b. Pitch point. 

c. End of the contact. 
 

Solution: 

Given data Find: 

Ø  20 1. Contact ratio  ? 

m  8 mm 2. Angle of action of pinion and gear  ? 

T  57 3. Ratio of sliding to rolling velocity at the 

t  23  a. Beginning of contact 

Addendum  1 module b. Pitch point 

 8 mm c. End of contact 

 
i. Let the length of path of contact KL =KP+PL 

KP =  - Rsinø
  

- 228sin20 
 
 



= 20.97mm 
 

 

PL = 




- rsinø





=18.79mm 

 

Arcofcontact  
Pathofcontact 

cos


 
KP KP 

cos


 
20.97  18.79 

cos20 

 42.29mm 

100    92cos20  92sin20 2  
2 




r - rcosø 2 

A  
2 





 

 

   p P 
   

 

Contactratio  
Lengthofarcofcontact 

Pc 

 
42.21 

 1.68 say 2 

m 
 
 
 

ii.  
 

Angleofactionofpinion(p) 


 

42.31 360 

2 92 

 26.34 

 

 
Lengthofarcofcontact360 

circumferenceofpinion 

 

Angleofactionofpinion(g )  
Lengthofarcofcontact360 

circumferenceof gear 
 

 
42.31 360   

2228 

 10.63 

 

 

iii. Ratio of sliding to rolling velocity: 
 
 

a. Beginning of contact 

Slidingvelocity 
 
p   g KP 

Rollingvelocity pr 


 

 92 
 

20.97 

228 


p  92 
 

 0.32 
 

b. Pitch point 



 

 

 p P 
   

 

Slidingvelocity 
 
p   g KP 

Rollingvelocity pr 

 
p   g   0 

pr 
 

 0 

 

 
c. End of contact 

Slidingvelocity 
 
p   g PL 

Rollingvelocity pr 


 

 92 
 

18.79 

228 


p  92 
 

 0.287 

Example 5.7: Two 20° gears have a module pitch of 4 mm. The number of teeth on gears 

1and 2 are 40 and 24 respectively. If the gear 2 rotates at 600 rpm, determine the velocity of 

sliding when the contact is at the tip of the tooth of gear 2. Take addendum equal to one 

module. Also, find the maximum velocity of sliding. 

 

Solution: 

 
Given data Find: 

Ø  20 Velocity of sliding  ? 

m  4 mm Max. velocity of sliding  ? 

Np  600 rpm 

T  40 

t  24 

Addendum  1 module 

 4 mm 
 
 

mt 4 24 
r     48mm 

2 2 
 

ra r  Add.  48 (1 4)  52mm 

mT 4  40 
R      80mm 

2 2 

RA R  Add.  80 (1 4)  84mm 



 

 

 
 

 
(Note: The tip of driving wheel is in contact with a tooth of driving wheel at the end of 

engagement. So it is required to find path of recess.) 
 

 

Path of recess 

PL  










 9.458mm 

rsinø



Velocity of sliding  
 (p  g )PL 

 

 
2
600  360 9.458 

60 
 Ng   


 t 
N  600  

24 
 360rpm




 g 

 NP T 40 




 956.82mm/ sec 

 
 

Path of recess 

KP  












 10.108mm 

Rsinø





Max. Velocity of sliding  
 p  g KP 


(600  360)10.108 

60 

 1016.16mm/ sec 

r  rcosø 2 
A  

2 

52    48cos20  48sin20 2  
2 




R  Rcosø 2 
A  

2 

84    80cos20  80sin20 2  
2 








 
2 



 

 

 
 
 

Example 5.8: Two 20° involute spur gears mesh externally and give a velocity ratio of 3. The 

module is 3 mm and the addendum is equal to 1.1 module. If the pinion rotates at the 120 

rpm, determine 

 

I. Minimum no of teeth on each wheel to avoid interference 
 

II. Contact ratio 

 
Solution: 

 
Given data Find: 

Ø  20 tmin & Tmin  ? 

VR  3 Contact ratio  ? 

m  3 

NP  120 

Addendum  1.1 module 

 
 

I. T  
2Aw

 
 1  1  
 1    2sin 

2 
ø  1

 G G  

T 
 21.1  
 1  1  
 1    2sin 

2 
20  1

 3  3  


T  49.44teeth 

 
T  51teeth And t  

T 
 

51 
 17teeth 

3 3 
 

II.  
mt 317 mT 3 51 

r      25.5mm R      76.5mm 
2  2  2 2 

ra r  Add.  25.5 (1.13)  28.8mm RA R Add.  76.5 (1.13)  28.8mm 

Contactratio  
Lengthofpathofcontact 

cos P c 



 

 

r  rcosø 2 
A  

2  Rsinø  rsinø
 

cos20   3 
 
 




 


 1.78 

 

 
cos20   3 

 

Thus 1 pair of teeth will always remain in contact whereas for 78 % of the time, 2 pairs of 

teeth will be in contact. 

Example 5.9: Two involute gears in a mesh have a velocity ratio of 3. The arc of approach is 

not to be less than the circular pitch when the pinion is the driver The pressure angle of the 

involute teeth is 20°.Determine the least no of teeth on the each gear. Also find the 

addendum of the wheel in terms of module. 

Solution: 
Given data Find: 

Ø  20 least no of teeth on the each gear  ? 

VR  3 Addendum  ? 

 

 
Arc of approach  circular pitch 

 
 m 

 
Pathofapproach  Arcofapproachcos20 

 

 mcos20 
 

 2.952m 

 
Let the max lengthofpathofapproach rsin



 
mt 

sin20 
2 

 0.171mt 

 
 

(1) 
 
 
 
 
 
 

(2) 
 

From eq. 1. And 2.  
0.171mt  0.2952m 

t 17.26  18teeth 

R  Rcosø 2 
A  

2 

79.8  76.5cos20  76.5sin20 2  
2  

 
 

28.8  25.5cos0  25.5sin20 2  
2 






 

 

 

T  183  54teeth 
 
 

Max. Addendum of the wheel 
 
 

 
Awmax 

 
mt 

 


2 




 1




m 54  1  
1  1 

 
 2 

 1



 

2 


3  3 
2Sin 20 

 

 1.2m 
 

Example 5.10: Two 20° involute spar gears have a module of 10 mm. The addendum is equal 

to one module. The larger gear has 40 teeth while the pinion has 20 teeth will the gear 

interfere with the pinion? 

Solution: 

Given data Find: 

Ø=20° Interference or not? 

m = 10 mm 

Addendum = 1 module 

 110 

 10mm 

Let the pinion is the driver 

t = 20 teeth 

T = 40 teeth 

 

mt 1020 
r     100mm 

2 2 
 

ra r  Add.  100  10  110mm 

Pathofapproach  




 25.29mm 

mT 10  40 
R     200mm 

2 2 
 

RA R  Add.  200  10  210mm 

Rsinø



To avoid the interference……. 

1 

1  1 



G G 

 2 

 2Sin 



RA 
2 Rcosø2 

210   200cos20  200sin20 2  
2 








 

 

R 

 

Maxlengthofpathofapproach rSin

 100Sin20 

 34.20mm25.29mm 

 
 

So Interference will not occur. 
 

Example 5.11: Two 20° involute spur gears have a module of 10 mm. The addendum is one 

module. The larger gear has 50 teeth and the pinion has l3 teeth. Does interference occur? If 

it occurs, to what value should the pressure angle be change to eliminate interference? 

 

Solution: 
 

Given data 
 

Ø=20° 
m=10 mm 
Addendum = 1 module = 10 mm 
T = 50 and t = 13 

 

 
mt 1013 

r     65mm 
2 2 

 
mT 10  50 

R      250mm 
2 2 

ra r  Add.  65  10  75mm RA R  Add.  250  10  260mm 
 
 
 
 
 
 

amax 
 
 

 




 258.45mm 

 

Here actual addendum radius Ra (260 mm) > Ra max value 
 

So interference will occur. 
 

The new value of ø can be found by comparing 

 
Ra max  Ra 

 
Ra  Ra max 

RCos 
2  
 RSin  rSin 

250Cos20  
2  

 250Sin20   65Sin20  



 

 

 

Ra 


260 


2602  

 250Cos 
2  
 250Sin  65Sin 

2
 

 
Cos2  0.861 

 
  21.88 

 

Note: If pressure angle is increased to 21.88° interference can be avoided 
 

Example 5.12: The following data related to meshing involute gears: 

No. of teeth on gear wheel = 60 

Pressure angle = 20° 

Gear ratio =1.5 

Speed of gear wheel = 100 rpm 

Module = 8 mm 

The addendum on each wheel is such that the path of approach and path of recess 

on each side are 40 % of the maximum possible length each. Determine the addendum for 

the pinion and the gear and the length of arc of contact. 

 
Solution: 

 
Given data Find: 

T = 60 Addendum for gear and pinion=? 

Ø= 20° Length of arc of contact=? 

G= 1.5 

Ng=100 rpm 

m=8 mm 

 
Let pinion is driver… 

 
Max. Possible length of path of approach  rsin


 Actual length of path of approach  0.4 rsin (Given in data) 

Same way… 

RCos 
2  
 RSin  rSin 

250Cos 
2  
 250Sin  65Sin 

2
 



 

 

RA 
2  Rcosø  

2 

RA
2  240cos20

2 

r  160cos20 2 
A  2 

r  rcosø 2 
A  2 



 

Actual length of path of recess  0.4 Rsin (Given in data) 

0.4 rsin   Rsinø

0.4 160sin20    240sin20

Ra  248.33 mm 

 
Addendumof wheel  248.3 240  8.3mm 

 

Also  
0.4 Rsin rsinø 

 

0.4 240  sin20   160sin20 

 
ra  173.98  174 mm 

 

Addendumof pinion 174 160  14 mm 
 

 

Pathofcontact 
Length of Arcofcontact    

cos



 
rsin Rsin 0.4 

cos



 
160  240 sin20  0.4 

cos20 

 
 58.2 mm 

 
Example 5.13: A pinion of 20 ° involute teeth rotating at 274 rpm meshes with a gear and 

provides a gear ratio of 1.8. The no. of teeth on the pinion is 20 and the module is 8mm .If 

interference is just avoided 

 
Determine: 1. Addendum on wheel and pinion 

2. Path of contact 

3. Max. Velocity of sliding on both side of pitch point 

Solution: 



 

 

1  GG 2sin2 ø 

1  1.81.8  2sin2 20 

 

Given data Find: 

Ø  20 1.Addndum on wheel andpinion  ? 

m  8 mm 2.Path of contact  ? 

Np  275 rpm 3. Max. velocity of sliding onboth side of pitchpoint  ? 

T  36 

t  20 
 

Max. Addendum on wheel 
A R 





1  

1  1 
 


2  1

w max 



G G 

2sin ø 
  




A  144  1  
1  1 

 
 2 

 1 

w max  

 1.8  1.8 
2sin 20 

 



11.5 mm 

 

Max. Addendum on pinion 
 

A r


1

p max  



A  80  1
pmax  



= 27.34 mm 

Path of contact when interference is just avoided …. 

 
 Max. path of approach  Max. path of recess 

 rsin Rsin


 80sin20  144sin20 

 
 27.36  49.25 

 
 76.6 mm 

 
Velocity of sliding ononesideof approach 



 

 

 

 

 
  

2275 
 28.8 rad / sec 




     
 P 

60 


p g  Path of approach  
 

 28.8 
 16 rad / sec 





 28.8  16 27.36 

 g 1.8  G 



 1225.72 mm / sec 

 

 
Velocity of sliding on side of path of recess 

 

 p  g Path of recess 

 
 (28.8  16) 49.25 

 
 2206 mm/ sec 

 
Example 5.14: A pinion of 20 involute teeth and 125 mm pitch circle diameter drives a 

rack. The addendum of both pinion and rack is 6.25 mm. What is the least pressure angle 

which can be used to avoid interference? With this pressure angle, find the length of the arc 

of contact and the minimum number of teeth in contact at a time. 

Solution: 

Given data Find: 

T  20 1.Least pressure angle to avoid interference  ? 

d  125mm 2. Length of arc of contact  ? 

r  OP  62.5 mm 3. Min. no. of teethin contact  ? 

Addendum for rack / pinion, LH  6.25 mm 

 
Least pressure angle to avoid interference 



 

 

 

 

Let ø = Least pressure angle to avoid interference. 
 

We know that for no interference, rack addendum, 
 

From fig..... LH  PLsin

 rsin sin

 rsin2 

sin2   
LH 

 
6.25

 

r 62.5 

  (18.4349) 

Length of arc of contact 

 
Now, KL 





 34.8 mm 

 

Length of Arc of Contact 
 KL 


 34.8 

 36.68 mm 

cos cos18.439 

 
Min. No. of teeth in contact 

 

Min. no. of teethin contact  
Length of arc of contact

 

pc 

 
Length of arc of contact 

m 

 
36.68 

19.64 
 1.87 

 2 

 
Example 5.15: In a spiral gear drive connecting two shafts, the approximate center distance 

is 400 mm and the speed ratio = 3. The angle between the two shafts is 50° and the normal 

pitch is 18 mm. The spiral angles for the driving and driven wheels are equal. 

Find : 1. Number of teeth on each wheel, 

2. Exact center distance, and 

3. Efficiency of the drive, if friction angle = 6°. 

4. Maximum efficiency. 

Solution: 

OK2  OL2 

(OP 6.25)2 (rcos )2 

(62.5  6.25)2 (62.5cos18.439 )2 



 

 




       

 

 

Given data: 

L  400 mm   50 G  
T2  3 
T1 

  6 PN  18 mm 

1. No. of teeth on wheel: 

 
P T  1   G  

L  N 1 
           

2   cos1  cos2 

400  
PN T1 

 1  G  

2 cos1 

18 T 1  3 















   1  2    

400  1   
1 2 

2 cos25  50  21 


T1  31.64 32 

T2  3T1  96 

 
2. Exact center distance (L): 

 

P  T  1 G 

L  N 1 
 



2 cos1 cos2 

 
P T  1  G 






 1  25 



  
( 1  2) 

2 cos 1 

 
18  32  1  3  

2 
cos25  

 404.600 mm 

3. Efficiency of drive: 

 

  
cos2    cos 1 

cos1    cos 2 

 
cos1   

















(    ) 

 cos1   
1 2 

 
cos25  6
cos25  6

 90.655 % 

 
4. Maximum efficiency: 

N 1 



 

 

 
 

  
cos    1 

max cos    1 

 
cos50  6  1 

cos50  6  1 

 90.685 % 

 

Example 5.16: A drive on a machine tool is to be made by two spiral gear wheels, the spirals 
of which are of the same hand and has normal pitch of 12.5 mm. The wheels are of equal 
diameter and the center distance between the axes of the shafts is approximately 134 mm. 
The angle between the shafts is 80° and the speed ratio 1.25. 
Determine : 1. the spiral angle of each wheel, 

2. The number of teeth on each wheel, 
3. The efficiency of the drive, if the friction angle is 6°, and 
4. The maximum efficiency. 

Solution: 
 

Given data: 

 
PN  12.5mm 

L  134 mm 

G  1.25 

 80 

 
1. Spiral angle of each wheel 

 

Weknow that........ 

 

 
d2  

T2Cos1 

d1 T1Cos2 

T1Cos2  T2Cos1 

 
 
 

( d1  d2 ) 

Cos1  1.25Cos2 ( 
T1  G  1.25) 
T2 

Cos1  1.25 Cos(  1) 

Cos1  1.25 Cos(80  1) 

( 1  2  ) 

Cos1  1.25Cos80 Cos1  Sin80 Sin1 

 Cos(A B)  CosA CosB  SinA SinB



 

 



By solving............... 

tan1  0.636 

1  32.46 

and 2  80  32.46  47.54 

 
2. No. of teeth on wheel: 

 

L  
d1  d2 

2 
134  

2d1
 

2 
d1  134 mm 

( d1  d2 ) 

Let pc1  
d1 

T1 

 d1  
pc1 T1 



d  
PN 

 
T1 

1 

 
T1 

 
T1 

cos1 

 
d1 cos1 

PN 

 
134 cos32.24  

12.5 
T1  28.4 30 nos. 

 

Now, G  
T1  1.25 

T2 

 
3. Efficiency of drive: 

T  
T1 

 30   
2 G 1.25 

T2  24 nos. 

 

 
cos2  cos 1  

cos1  cos 2 

 
cos47.24  6cos32.46 

cos32.46  6cos 47.24 

 83 % 

 
4. Maximum efficiency: 

 

  
cos    1 

max cos    1 

 
cos80  6  1 

cos80  6  1 

 83.8 % 



 

 

2 0.84 1 

12  1  2(0.3123)2 

r 






1 
1  1 

G G 
  2 sin 2 ø  1

 

 

R  Rcos ø 2 
A  2 

  7.34m 

 

Example 5.17: Find the minimum no. of teeth on gear wheel and the arc of contact(in term 

of module) to avoid the interference in the following cases: 

I. The gear ratio is unity 

II. The gear ratio is 3 

III. Pinion gear with a rack 

Addendum of the teeth is 0.84 module and the power component is 0.95 times the normal 

thrust. 

Solution: 

 
Here Aw  0.84 

Cos  0.95    18.19 

sin  0.3122 

I. Gear ratio is unity 

 
 Let min. no of teeth on gear wheel T 

T  
2Aw

 

 
 

 





 
  1



 12.73 

T  13 teeth 

t  13 teeth 

 Length of arc of contact: 

L.P.C   Rsinø 















m t 

 

 
rsinø

m13 

  
r 

2   rcos ø
2

 

 

 
A   2 2 

 6.5m



 2 A 

 

 2m
 3.876m 

rsinø  r  r  addendum 
  6.5m  0.84m 

 

 (6.5 0.3123)




2Aw G 

G2  1  2Gsin2 ø  G


r  rcos ø 2 
A  2 

(7.34)2  6.5 0.95
2

 



 

 

2 0.84  3 

32  1  2 3(0.3123)2 






1 
1  1 

G G 
  2 sin2 ø  1

 

 

R  Rcos ø 2 
A  2 

r  rcos ø 2 
A  2 

 A 





L.A.C  
3.876m 

 
3.876m 

cos ø 
L.A.C  4.08m 

II. Gear ratio G = 3 

0.95 

 

 Let min. no of teeth on gear wheel T 

T  
2Aw

 

 
 
 





 





 45.11 

T  45 teeth 

t  15 teeth 

 Length of arc of contact: 

 
 

 3




L.P.C   Rsinø  rsinø


 
r  

mt 
 

m15 
 7.5m




 



 
2 2  

r  r  addendum 
 7.5m 0.84m 


 8.34m 

mT m 45 
R    22.5m 
 2 2 
 R    R  addendum 
 A   

 


22.5m  0.84m 
23.34m 

 

2Aw G 



G2  1  2Gsin2 ø  G





(1) 

 











 

 

(23.34m)2  22.5m 0.95
2

 (8.34m)2  7.5m  0.95
2

 

 



putting all values in equation (1) 
 

    22.5m 0.3122   7.5m 0.3122

 4.343m 

 
L.A.C  

4.343m 
 

3.876m 

cos ø 
L.A.C  4.57m 

0.95 

 

III. Pinion gear with a rack 

 Min. no. of teeth on pinion t 
 

t  
2 AR 

sin2 
 

  2  0.84   

(0.3123)2 

t  17.23 

t  18 

 

 Length of arc of contact: 
 

L.P.C  

 2



Rsinø 

rsinø



rsinø
( assume rack andpinion same dimension) 

 r  
mt 

 
18m 

 


    A 2 2 
9m




 
(9.84)2  9m 0.95

2
 

 2  9m 0.3123  r  r  addendum 
  9m  0.84m 

 9.84m 
 

 4.12m 

 
L.A.C  

4.12m 
 

4.12m 

cos ø 0.95 
L.A.C  4.337m 

R  Rcos ø 2 
A  2 

r  rcos ø 2 
A  2 

rA 
2  rcos ø2 
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6.1 Introduction 

Definition 

 When two or more gears are made to mesh with each other to transmit power from 

one shaft to another. Such a combination is called gear train or train of toothed 

wheels. 

 The nature of the train used depends upon the velocity ratio required and the 

relative position of the axes of shafts. A gear train may consist of spur, bevel or spiral 

gears. 

 

6.2 Types of Gear Trains 
1. Simple gear train 

2. Compound gear train 

3. Reverted gear train 

4. Epicyclic gear train 

5. Compound epicyclic gear train 

 
6.2.1 Simple gear train. 

 When there is only one gear on each shaft, as shown in Fig. , it is known as simple 

gear train. The gears are represented by their pitch circles. 

 When the distance between the two shafts is small, the two gears 1 and 2 are made 

to mesh with each other to transmit motion from one shaft to the other, as shown in 

Fig. 

 Since the gear 1 drives the gear 2, therefore gear 1 is called the driver and the gear 2 

is called the driven or follower. It may be noted that the motion of the driven gear is 

opposite to the motion of driving gear. 

(a) (b) 

Fig.6.2.1 Simple gear train 



 

 

 

Let 

N1  Speedofdriver rpm 

N2  Speedof intermediatewheel rpm 

N3  Speedof follower rpm 

T1 Number of teethon driver 

T2  Number of teethonintermediatewheel 

T3 Number of teethonfollower 

 

 Since the driving gear 1 is in mesh with the intermediate gear 2, therefore speed ratio 

for these two gears is 

 

N1  
T2 

N2 T1 

 

(1) 

 Similarly, as the intermediate gear 2 is in mesh with the driven gear 3, therefore speed 

ratio for these two gears is 

 

N2  
T3 

N3 T2 

 

(2) 

 The speed ratio of the gear train as shown in Fig. (a) Is obtained by multiplying the 

equations (1) and (2). 

 
N1  

N2  
T2  

T3 

N2 N3 T1 T2 


N1  

T3 
  

N3 T1 

 Sometimes, the distance between the two gears is large. The motion from one gear to 

another, in such a case, may be transmitted by either of the following two methods: 

 
1. By providing the large sized gear, or 

 A little consideration will show that this method (i.e. providing large sized 

gears) is very inconvenient and uneconomical method. 

 
2. By providing one or more intermediate gears. 

 This method (i.e. providing one or more intermediate gear) is very 

convenient and economical. 

 
 It may be noted that when the number of intermediate gears are odd, the motion of 

both the gears (i.e. driver and driven or follower) is like as shown in Fig. (a). 

 If the numbers of intermediate gears are even, the motion of the driven or follower will 

be in the opposite direction of the driver as shown in Fig (b). 



 

 

 

 speed ratio (or velocity ratio) of gear train is the ratio of the speed of the driver to the 

speed of the driven or follower and ratio of speeds of any pair of gears in mesh is the 

inverse of their number of teeth. 

 

Speedratio  
N1    

T2
 

N2 T1 

 
 Train value of the gear train is the ratio of the speed of the driven or follower to the 

speed of the driver. 

Trainvalue  
N2    

T1
 

N1 T2 

 
6.2.2 Compound Gear Train 

 When there is more than one gear on a shaft, as shown in Fig., it is called a 

compound train of gear. 

 The idle gears, in a simple train of gears do not affect the speed ratio of the system. 

But these gears are useful in bridging over the space between the driver and the 

driven. 

 But whenever the distance between the driver and the driven or follower has to be 

bridged over by intermediate gears and at the same time a great (or much less) 

speed ratio is required, then the advantage of intermediate gears is intensified by 

providing compound gears on intermediate shafts. 

 In this case, each intermediate shaft has two gears rigidly fixed to it so that they may 

have the same speed. One of these two gears meshes with the driver and the other 

with the driven or follower attached to the next shaft as shown in Fig. 
 
 

Fig. 6.2.2 compound gear train 



 

 

 

 In a compound train of gears, as shown in Fig., the gear 1 is the driving gear mounted 

on shaft A; gears 2 and 3 are compound gears which are mounted on shaft B. The 

gears 4 and 5 are also compound gears which are mounted on shaft C and the gear 6 

is the driven gear mounted on shaft D. 

 

Let 

N1 = Speed of driving gear 1, 

T1 = Number of teeth on driving gear 1, 

N2 ,N3 ..., N6 = Speed of respective gears in r.p.m., and 

T2 ,T3..., T6 = Number of teeth on respective gears. 

 

Since gear 1 is in mesh with gear 2, therefore its speed ratio is 

 

N1  
T2 

N2 T1 

 
Similarly, for gears 3 and 4, speed ratio is 

 
N3  

T4 

N4 T3 

 
And for gears 5 and 6, speed ratio is 

 
N5  

T6 

N6 T5 

 

(1) 
 
 
 
 

 
(2) 

 
 
 
 

 
(3) 

 

The speed ratio of compound gear train is obtained by multiplying the equations (1), 

(2) and (3), 

 
N1  

N3  
N5  

T2  
T4  

T6 

N2 N4 N6 T1 T3 T5 

 
 The advantage of a compound train over a simple gear train is that a much larger 

speed reduction from the first shaft to the last shaft can be obtained with small 

gears. 

 If a simple gear train is used to give a large speed reduction, the last gear has to be 

very large. 

 Usually for a speed reduction in excess of 7 to 1, a simple train is not used and a 

compound train or worm gearing is employed. 



 

 

 

6.2.3 Reverted Gear Train 

 When the axes of the first gear (i.e. first driver) and the last gear (i.e. last driven or 

follower) are co-axial, then the gear train is known as reverted gear train. 

 Gear 1 (i.e. first driver) drives the gear 2 (i.e. first driven or follower) in the opposite 

direction. Since the gears 2 and 3 are mounted on the same shaft, therefore they 

form a compound gear and the gear 3 will rotate in the same direction as that of 

gear 2. The gear 3 (which is now the second driver) drives the gear 4 (i.e. the last 

driven or follower) in the same direction as that of gear 1. Thus we see that in a 

reverted gear train, the motion of the first gear and the last gear is like. 

 

Let  
T1 

r1 


Number of teeth on gear 1, 

Pitch circle radius of gear 1, and 

N1  Speed of gear 1 in r.p.m. 

Similarly, 

T2, T3, T4  Number of teeth on respective gears, 

r2, r3, r4  Pitch circle radii of respective gears, and 

N2, N3, N4  Speed of respective gears in r.p.m. 
 

Fig. 6.2.3 Reverted gear train 

 
 Since the distance between the centers of the shafts of gears 1 and 2 as well as gears 

3 and 4 is same, therefore 

 
r1 r2 r3 r4 



 

 

 

 Also, the circular pitch or module of all the gears is assumed to be same; therefore 

number of teeth on each gear is directly proportional to its circumference or radius. 

 
T1 T2 T3 T4 

 

Speedratio  
Product of number of teeth on drivens 

Product of number of teeth on drivers 

 
N1  

T2  T4 

N4 T1  T3 

 
Application 

 The reverted gear trains are used in automotive transmissions, lathe back gears, 

industrial speed reducers, and in clocks (where the minute and hour hand shafts are 

co-axial). 

 
6.2.4 Epicyclic Gear Train 

 In an epicyclic gear train, the axes of the shafts, over which the gears are mounted, 

may move relative to a fixed axis. A simple epicyclic gear train is shown in Fig. where 

a gear A and the arm C have a common axis at O1 about which they can rotate. The 

gear B meshes with gear A and has its axis on the arm at O2, about which the gear B 

can rotate. 

 If the arm is fixed, the gear train is simple and gear A can drive gear B or vice- versa, 

but if gear A is fixed and the arm is rotated about the axis of gear A (i.e. O1), then the 

gear B is forced to rotate upon and around gear A. Such a motion is called epicyclic 

and the gear trains arranged in such a manner that one or more of their members 

move upon and around another member is known as epicyclic gear trains (epi. 

means upon and cyclic means around). The epicyclic gear trains may be simple or 

compound. 
 
 

Fig. 6.2.4 Epicyclic gear train 



 

 

 

Sr. No. Condition of motion 
Revolution of element 

Arm C Gear A Gear B 

1 
Arm fixe, gear A rotates +1 
revolution(anticlockwise) 

0 +1 
 

TA 
TB 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 x 
 x 

T
A

 

TB 

3 
Add + y revolutions to all 

elements 
 y  y  y 

4 Total motion  y x  y y- x 
T

A
 

TB 

 

Application 

 The epicyclic gear trains are useful for transmitting high velocity ratios with gears of 

moderate size in a comparatively lesser space. The epicyclic gear trains are used in 

the back gear of lathe, differential gears of the automobiles, hoists, pulley blocks, 

wrist watches etc. 

 

6.2.5 Compound Epicyclic Gear Train—Sun and Planet Gear 

 A compound epicyclic gear train is shown in Fig. It consists of two co-axial shafts S1 

and S2, an annulus gear A which is fixed, the compound gear (or planet gear) B-C, 

the sun gear D and the arm H. The annulus gear has internal teeth and the 

compound gear is carried by the arm and revolves freely on a pin of the arm H. The 

sun gear is co-axial with the annulus gear and the arm but independent of them. 

 The annulus gear A meshes with the gear B and the sun gear D meshes with the gear 

C. It may be noted that when the annulus gear is fixed, the sun gear provides the 

drive and when the sun gear is fixed, the annulus gear provides the drive. In both 

cases, the arm acts as a follower. 
 
 

 

Fig. 6.2.5 Compound epicyclic gear train. 



 

 

 

Note: The gear at the center is called the sun gear and the gears whose axes move are 

called planet gears. 

 
Let TA, TB, TC, and TD be the teeth and NA, NB, NC and ND be the speeds for the gears A, B, 

C and D respectively. A little consideration will show that when the arm is fixed and the 

sun gear D is turned anticlockwise, then the compound gear B-C and the annulus gear A 

will rotate in the clockwise direction. 

 
The motion of rotations of the various elements is shown in the table below. 

 
Table of motions 

Sr. 
No. 

 
Condition of motion 

Revolution of motion 

Arm Gear D 
Compound 
Gear (B-C) 

Gear A 

 

1 
Arm fixe, gear D rotates 

+1 
revolution(anticlockwise) 

 

0 
 

+1 
 

TD 
TC  

TD 
 TB 

TC TA 

2 
Arm fixed gear D rotates 
through + x revolutions 

0 +x x 
TD 

TC 

x 
TD  

TB
 

TC TA 

3 
Add + y revolutions to all 

elements 
+y +y +y +y 

4 Total motion +y x  y y  x 
TD

 

TC 

y  x 
TD  

TB
 

TC TA 



 

 

NF  52 rpm 

 

EXAMPLES 
Example 6.1. The gearing of a machine tool is shown in Fig.2.1. The motor shaft is 

connected to gear A and rotates at 975 rpm. The gear wheels B, C, D and E are fixed to 

parallel shafts rotating together. The final gear F is fixed on the output shaft. What is the 

speed of gear F? The number of teeth on each gear is as given below: 
 
 

Gear A B C D E F 
No. of teeth 20 50 25 75 26 65 

 

Fig. 6.1 

Solution: 

 
Given data 

 

TA  20 NF  ? 

TB  50 

TC  25 

TD  75 

TE  26 

TF  65 

NA  975 rpm 

 
 

NF  
TA  

TC  
TE 

NA TB TD TF 

 

 
NF     

20 
 

20 
 

26 

975 50 75 65 

 



 

 

 

Example 6.2 In an epicyclic gear train, an arm carries two gears A and B having 36 and 45 

teeth respectively. If the arm rotates at 150 rpm in the anticlockwise direction about the 

center of the gear A which is fixed, determine the speed of gear B. If the gear A instead of 

being fixed makes 300 rpm in the clockwise direction, what will be the speed of gear B? 

 

 
Fig.6.2 

 

Solution :  
 

Given data Find 

TA  36 Gear Afixed NB  ? 

TB  45 NA  300(Clockwise) NB  ? 

NC  150(Anticlockwise) 
 

Sr. No. Condition of motion 
Revolution of element 

Arm C Gear A Gear B 

1 
Arm fixe, gear A rotates +1 
revolution(anticlockwise) 

0 +1 
 

TA 
TB 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 x 
 x 

T
A

 

TB 

3 
Add + y revolutions to all 

elements 
 y  y  y 

4 Total motion  y x  y y- x 
T

A
 

TB 

 
 

1. Speed of gear B (NB) when gear A is fixed 
 

Here, gear A fixed 

 x  y  0 

 x  150  0 

 x  150 



 

 

B 

 270rpm(Anticlockwise) 

 510 rpm(Anti clockwise) 

 

Speed of gear B (N )  y  x 
TA

 

TB 

 y (150) 
36

 

45 

 

2. Speed of gear B (NB) when gear NA = -300 (Clockwise) 
 

Here given 

x  y  300 

x  150  300 

x  450   rpm 
 

Speed of gear B (NB) 

 y  x 
TA

 

TB 

 150 (450) 
36

 

45 

 

Example 6.3 In a reverted epicyclic gear train, the arm A carries two gears B and C and a 

compound gear D - E. The gear B meshes with gear E and the gear C meshes with gear D. 

The number of teeth on gears B, C and D are 75, 30 and 90 respectively. Find the speed 

and direction of gear C when gear B is fixed and the arm A makes 100 rpm clockwise. 
 

 

Fig. 6.3 



 

 

 
 
 

Solution Given data find 
 

TB  75 GearBfixed NC  ? 

TC  30 NA  100 NC  ? 

TD  90 

NA  100(Clockwise) 
 

Let dC  dD  dB  dE 

TC  TD  TB  TE 

30  90  75  TE 

TE  45 

(rC rD rB rE) 

 

Sr. 
No. 

Condition of motion 
Revolution of element 

Arm C Gear A Gear B Gear C 

 

1 
Arm fixe, gear A rotates 

+1 
revolution(anticlockwise) 

 

0 
 

+1 
 

TE 
TB  

TD 
TC 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 x 
x 

T
E

 
 

TB 

x 
T

D
 

 

TC 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion  y x  y y  x 
T

E
 

TB 

y  x 
T

D
 

TC 

 
 

GearBisfixed  y  x 
TE  0 
TB 

 100  x 
45 

 0 
75 

 x  166.67 

Speedof gear C (N )  y x 
TD

 
C 

TC 

 100 (166.67) 
90

 

30 

 
 400 rpm(Anti clockwise) 



 

 

 

Sr. 
No. 

Condition of motion 
Revolution of element 

Arm C Gear A Gear B Gear C 

 
1 

Arm fixe, gear A rotates 
+1 

revolution(anticlockwise) 

 
0 

 
+1 

 
TB 
TE  

TB 
 

TD 

TE TC 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 x x 
TB 

TE 
 x 

T
B  

T
D

 

TE TC 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion  y x  y y  x 
T

B
 

TE 

y  x 
T

B  
T

D
 

TE TC 

From fig (rC rD rB rE) 

TC  TD  TB  TE 

TE  90  30  75 

TE  45 

When gear B is fixed 

x  y  0 

x  (100)  0 

x  100 
 

Now NC  y  x 
TB  

TD
 

TE TC 

 100  100  
75 

 
90

 

45 30 
 

 
 

Example 6.4 An epicyclic gear consists of three gears A, B and C as shown in Fig. The gear A 

has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A and 

C and is carried on an arm EF which rotates about the centre of A at 18 rpm. If the gear A 

is fixed, determine the speed of gears B and C. 

 
Fig. 6.4 

NC  400 rpm (Anticlockwise) 



 

 

 58.5 rpm(inthedirectionof arm) 

 46.8 rpm(intheopposite direction of arm) 

 

 

Solution: 
 

TB  72 (Internal) Gear Afixed NB  ? 

TC  32 (External) 

Arm EF  18rpm 

NC  ? 

 

From the geometry of fig. 
 

rA rC  2rB 

TA  TC  2TB 

TB  20 
 

Sr. 
No. 

Condition of motion 
Revolution of element 

Arm C Gear A Gear B Gear C 

 

1 
Arm fixe, gear A rotates 

+1 
revolution(anticlockwise) 

 

0 
 

+1 
 

TC 
TB  

T
C  

T
B   

T
C 

TB TA TA 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 +x 
x 

T
C

 

TB 

x 
T

C
 

TA 

3 
Add + y revolutions to all 

elements 
+y +y +y +y 

4 Total motion y x+y 
y  x 

T
C

 

TB 

y  x 
T

C
 

TA 

1. Speed of gear C (Nc) 

Gear Aisfixed  y  x 
TC  0 

TA 

 18  x 
32 

 0 
72 

 x  40.5 

Speed of gear C (NC )  x  y 

 40.5  18 

2. Speed of gear B (NB) 

Speedof gearB  y  x 
TC

 

TB 

 18  40.5 
32

 
20 

 46.8 rpm 



 

 

 

Example 6.5 Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted on 

shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and 

gears with C and E has 35 teeth and gears with an internal gear G. The gear G is fixed and 

is concentric with the shaft axis. The compound gear D-E is mounted on a pin which 

projects from an arm keyed to the shaft B. Sketch the arrangement and find the number 

of teeth on internal gear G assuming that all gears have the same module. If the shaft A 

rotates at 110 rpm, find the speed of shaft B. 
 
 

 
Fig 6.5 

 

Solution: 
 

TC  50 No.of teethon internal gear  ? 

TD  20 Speed ofshaft B  ? 

TE  35 

NC  110 (Rotationofshaft) 
 

From the geometry of fig. 
 

dG  
dC  

dD  
dE 

2 2 2 2 

 
dG  dC  dD   dE 

 
TG  TC  TD  TE 

 
TG  50  20  35 

 
TG  105 



 

 

 

Sr. 
No. 

 
Condition of motion 

Revolution of element 

Arm C 
Gear C 

(Shaft A) 
Compound 
Gear (D-E) 

Gear G 

 

1 
Arm fixe, gear A rotates 

+1 
revolution(anticlockwise) 

 

0 
 

+1 
 

TC 
TD  

TC  
TE 

TD TG 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 +x 
x 

T
C

 

TD 

x 
T

C  
T

E
 

TD TG 

3 
Add + y revolutions to all 

elements 
+y +y +y +y 

4 Total motion y x+y 
y  x 

T
C

 

TD 

y  x 
T

C  
T

E
 

TD TG 

Speed of shaft B 

Here given gear G is fixed 

y  x 
TC  

TE  0 

TD TG 

y  x 
50 


 35 

 0 
20 105 

y  x 
5 
 0 

6 

 
 
 
 
 
 

 
(1) 

Also given gear C is rigidly mounted on shaft A 
 

x  y  110 

Solving eq. (1) & (2) 
x  60 

y  50 

(2) 

 

 
 

Example 6.6: In an epicyclic gear train, as shown in Fig.13.33, the number of teeth on 

wheels A, B and C are 48, 24 and 50 respectively. If the arm rotates at 400 rpm, clockwise, 

Find: 1. Speed of wheel C when A is fixed, and 

2. Speed of wheel A when C is fixed 
 
 

Fig. 6.6 

Speed of shaft B  Speed of arm   y  50 rpm 



 

 

NC  16 rpm(Clockwise direction) 

 

Solution:  

TA  48 Gear AfixedNC    ? 

TB  24 GearC fixed NA    ? 

TC  50 y  400 rpm(Arm rotationclockwise) 
 
 
 

 
Sr. 
No. 

Condition of motion 
Revolution of element 

Arm C Gear A Gear B Gear C 

 

1 
Arm fixe, gear A rotates 

+1 
revolution(anticlockwise) 

 

0 
 

+1 
 

TA 
TB 

 
 

TA 

 
 

TB  
  

TA 
 

T  
   

T  
 

T
 

 B     C   C 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 x 
 x 

T
A

 

TB 

 x 
T

A
 

TC 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion y x  y y  x 
T

A
 

TB 

y  x 
T

A
 

TC 

1. Speed of wheel C when A is fixed 

 
When A is fixed 

 x  y  0 

 x  400  0 

 x  0 

N  y  x 
TA

 
C 

TC 

 400  400  
48

 
50 

 16 rpm 

2. Speed wheel A when C is fixed 

When C is fixed 
 

NC  0 

y  x 
TA  0 

TC 

400  x 
48 

 0 
50 

x  416.67 



 

 

NA  16.67 (Anticlockwise) 

 

NA  x  y 

 416.67  400 

Example 6.7: An epicyclic gear train, as shown in Fig. 13.37, has a sun wheel S of 30 teeth 

and two planet wheels P-P of 50 teeth. The planet wheels mesh with the internal teeth of 

a fixed annulus A. The driving shaft carrying the sunwheel transmits 4 kW at 300 rpm. The 

driven shaft is connected to an arm which carries the planet wheels. Determine the speed 

of the driven shaft and the torque transmitted, if the overall efficiency is 95%. 
 

Fig.6.7 
 

Solution 
 

 
From the geometry of fig. 

 
TS  30 TP  50 TA  130 

NS  300 rpm P  4 KW 

 
rA  2rP rS 

TA  2TP  TS 

 2 50  30 

 130 

Sr. 
No. 

Condition of motion 
Revolution of element 

Arm C Gear A Gear B Gear C 

 

1 
Arm fixe, gear A rotates 

+1 
revolution(anticlockwise) 

 

0 
 

+1 
 

TS 
TP  

 
TS 


 TP  

  
TS 

 
T 

    
T 

 
T

 
 P       A   A 

2 
Arm fixed gear A rotates 
through + x revolutions 

0 x 
 x 

T
S
 

TP 

 x 
T

S
 

TA 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion y x  y y  x 
T

S
 

TP 

y  x 
T

S
 

TA 



 

 

 

Here,  
NS  300rpm 

x  y  300 

 

 
(1) 

 

Also, Annular gear A is fixed 
 

y  x 
TS  0 

TA 

y  x
 30 

 0 
130 

y  0.23x 

 
 
 
 
 
 
 

(2) 
 

Solving equation eq. (1) & (2) 
 

x  243.75 

y  56.25 

Speed of Arm = Speed of driven shaft = y = 56.25 rpm 
 
 

Here, P = 4 KW &  95% 

 

  
Pout 

Pin 

Pout  Pin 


 95 

 4
 

100 
 3.8 KW 

 

Also,  
Pout 


2NT 

60 

3.8103 
 

256.30T 

60 
T  644.5 Nm 



 

 

 

Example 6.8 An epicyclic gear train is shown In fig. Find out the rpm of pinion D if arm A 

rotate at 60 rpm in anticlockwise direction. No of teeth on wheels are given below. 
 

 

 
Solution: 

Fig.6.8 

 

TD  40 ND  ? 

TC  60 

TB  120 

NA  60 rpm(Anticlockwise) 

Sr. 

No. 
Condition of motion 

Revolution of element 

Arm C Gear B Gear C Gear D 

 
1 

Arm fixe, gear A rotates 

+1 

revolution(anticlockwise) 

 
0 

 
+1 

 
TB  

TC 
TB  

TC     
TB  

TC TD TD 

2 
Arm fixed gear A rotates 

through + x revolutions 
0 x 

x 
T

B
 

TC 

 x 
T

B
 

TD 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion y x  y y  x 
T

B
 

TC 

y  x 
T

B
 

TD 

From fig. Gear B is fixed 
 

x  y  0 

x  60  0 ( rpmof armA  60  y) 

x  60 

Now motion of gear D 

 y  x 
TB

 

TD 

 60  60  
120

 
40 

 120 rpm 

D rotates 120 rpm in clockwise direction. 
Note: By fixing any gear C OR B this problem can be solved 



 

 

 

Example 6.9 An epicyclic gear train for an electric motor is shown in Fig. The wheel S has 15 

teeth and is fixed to the motor shaft rotating at 1450 rpm. The planet P has 45 teeth, gears 

with fixed annulus A and rotates on a spindle carried by an arm which is fixed to the output 

shaft. The planet P also gears with the sun wheel S. Find the speed of the output shaft. If the 

motor is transmitting 1.5 kW, find the torque required to fix the annulus A. 

 
 

Solution: 

Fig. 6.9 
 

 
TS  15 Speedof outputshaft  ? 

TP  45 Torque  ? 
 

From fig.  

rA rs  2rP 

TA  TS  2TP 

TA  105 
 

Sr. 

No. 
Condition of motion 

Revolution of element 

Spindle Gear S Gear P Gear A 

 

1 

Sector/Spindle fixed, 

gear S rotates +1 

revolution 

(anticlockwise) 

 

0 

 

+1 

 
 

TS 
TP 

 
 

T
S  

T
P   

T
S 

TP TA TA 

 
2 

Spindle fixed gear S 

rotates through + x 

revolutions 

 
0 

 

x  x 
T

S
 

TP 
 x 

TS 

TA 

3 
Add + y revolutions to 

all elements 
 y  y  y  y 

4 Total motion y x  y y  x 
T

S
 

 

TP 

y  x 
T

S
 

 

TA 



 

 

 

x 

 

Motor shaft is fixed with gear S 
 

x  y  1450 

And Annular A is fixed 
 

y  x 
TS  0 
TA 

y  
  15 

 0 
105 

y  x 
15

 

105 

 

 
(1) 

 
 
 
 
 
 
 
 

(2) 

 

By solving equation (1) & (2) 
 

x  1268.76 

y  181.25 

Speed of output shaft y = 181.25 rpm 
 

 Torque on sun wheel (S) (input torque) 

 

P  
2NTi 

60 

T  
P 60 

i 2N 
 
2103 

 60  














  
   2 

KW



  1.35 21450 1.35 HP 1 KW 2HP 1.35 


   

 9.75Nm 

 
 Torque on output shaft (with 100% mechanical efficiency) 

 

To  
P 60 

2N 

 
2103  

  60  
 

1.35 
 

2181.25 

 78.05 Nm 
 

 Fixing torque  
 

 To  Ti 

 78.05  9.75 

 68.3 Nm 



 

 

 

 

Example 6.10: If wheel D of gear train as shown in fig. is fixed and the arm A makes 140 

revolutions in a clockwise direction. Find the speed and direction of rotation of B & E. C is 

a compound wheel. 

 

Fig.6.10 

Solution: 

TB  30 TC  35 TD 19 TE  30 

Sr. 

No. 
Condition of motion 

Revolution of element 

Spindle Gear S Gear P Gear A 

 
1 

Arm fixe, gear A rotates 

+1 

revolution(anticlockwise) 

 
0 

 
+1  

20 

15 

 
 

20 

 
 

35 

 
 

19 
 15      19    30        

2 
Arm fixed gear A rotates 

through + x revolutions 
0 x 1.33x 1.555x 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion y x  y y 1.33x y 1.555x 

 

 When gear D is fixed 

y  2.456x  0 

140  2.456x  0 ( y  140rpm given) 

x  57 
 

 Speed of gear B 
 

NB  x  y 

 57  140 

 83rpm(Clockwise) 

 Speed of gear E 
 

NE  y  1.555x 

 140  1.555(57) 

 228.63rpm(Clockwise) 



 

 

 

 

Example 6.11: The epicyclic train as shown in fig. is composed of a fixed annular wheel A 

having 150 teeth. Meshing with A is a wheel b which drives wheel D through an idle wheel 

C,D being concentric with A. Wheel B and C are carried on an arm which revolve clockwise 

at 100 rpm about the axis of A or D. If the wheels B and D are having 25 teeth and 40 teeth 

respectively, Find the no. of teeth on C and speed and sense of rotation of C. 
 
 

Fig. 6.11 

Solution: 
From the geometry of fig. 

rA  2rB  2rC rD 

TA  2TB  2TC  TD 

150  50  2TC  40 

TC  30 

Sr. 

No. 
Condition of motion 

Revolution of element 

Arm Gear D Gear C Gear B Gear A 

 
1 

Arm fixe, gear D 

rotates +1 revolution 

(anticlockwise) 

 
0 

 
+1  

T D  

TC 
 

T D  

TB 

 

 
T D  

TA 

 
2 

Arm fixed gear D 

rotates through + x 

revolutions 

 
0 

 

x x 
T D  

TC 
x 

T
D 

 

TB 

x 
T

D 
 

TA 

3 
Add + y revolutions 

to all elements 
 y  y  y  y  y 

4 Total motion  y x  y y  x 
T

D
 

 

TC 

y  x 
T

D
 

 

TB 

y  x 
T

D
 

 

TA 



 

 

 

Now  
NA  0 

y  x 
TD  0 

TA 

100  x
 40 

 0 
150 

 
Let 

x  375 

N  y  x 
TD

 
C 

TC 

 100  375 
40

 
30 

 600rpm 

 
Example 6.12: Fig. 13.24 shows a differential gear used in a motor car. The pinion A on the 

propeller shaft has 12 teeth and gears with the crown gear B which has 60 teeth. The 

shafts P and Q form the rear axles to which the road wheels are attached. If the propeller 

shaft rotates at 1000 rpm and the road wheel attached to axle Q has a speed of 210 rpm. 

while taking a turn, find the speed of road wheel attached to axle P. 
 
 

Fig. 6.12 
 

Solution:  

TA  12 

TB  60 

NQ ND  210rpm 

NA  1000rpm 



 

 

 

Let  
NA  TA  NBTB 

N  N  
TA 

B A 
B 

 1000  
12

 
60 

 200rpm 

Sr. 
No. 

Condition of motion 
Revolution of element 

Gear B Gear C Gear E Gear D 

 
1 

Gear B is fixed, gear C 
rotates +1 

revolution(anticlockwise) 

 
0 

 
+1 

 
TC 
TE 

 
-1 

 

2 
Gear B is fixed gear C 
rotates through + x 

revolutions 

 

0 x x 
T

C
 

TE 
x 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion  y x  y y  x 
T

C
 

TE 
y  x 

 
Let here speed of gear B is 200 rpm 

NB 200  y 

From table  
ND  y  x  210 

x  y  210 

x  200  210 

x  10rpm 

Let speed of road wheel attached to the axle P = Speed of gear C 
 x  y 

 10  200 

 180rpm 

 
Example 6.13: Two bevel gears A and B (having 40 teeth and 30 teeth) are rigidly mounted 

on two co-axial shafts X and Y. A bevel gear C (having 50 teeth) meshes with A and B and 

rotates freely on one end of an arm. At the other end of the arm is welded a sleeve and 

the sleeve is riding freely loose on the axes of the shafts X and Y. Sketch the arrangement. 

If the shaft X rotates at 100 rpm. clockwise and arm rotates at 100 rpm. anticlockwise, find 

the speed of shaft Y. 

T 



 

 

 

 
 

 

Solution : 
Fig. 6.13 

 

TA  40 TC  50 TB  30 

NX  NA  100rpm(Clockwise) 

Speedof arm  100rpm 
 

Sr. 

No. 
Condition of motion 

Revolution of element 

Arm Gear A Gear C Gear B 

 
1 

Arm fixe, gear A rotates 

+1 

revolution(anticlockwise) 

 
0 

 
+1  

TA  

TC 

 
TA 

TB 

2 
Arm fixed gear A rotates 

through + x revolutions 
0 x 

 x 
T

A
 

TC 

 x 
T

A
 

TB 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion  y x  y y  x 
T

A
 

TC 

y  x 
T

A
 

TB 

 

Here speed of arm = y =+100 rpm (given) 

Also given NA NX  100rpm 

NA  x  y 

100  x  100 

x  200 

Speed of shaft Y  NB 

 y  x 
TA

 

TB 

 100  200  
40

 
30 

 366.7rpm(Anticlockwise) 



 

 

 

Example 6.14. An epicyclic train of gears is arranged as shown in Fig. How many 
revolutions does the arm, to which the pinions B and C are attached, make: 1. when A 
makes one revolution clockwise and D makes half a revolution anticlockwise, and 2. when 
A makes one revolution clockwise and D is stationary? The number of teeth on the gears A 
and D are 40 and 90 respectively. 

 

Fig. 6.14 
 

Solution: 

TA  40 

TD  90 

First of all, let us find the number of teeth on gear B and C (i.e. TB and Tc). Let dA , dB, dC, dD 
be the pitch circle diameter of gears A, B, C, and D respectively. Therefore from the 
geometry of fig, dA + dB + dC = dD or dA + 2 dB = dD ...( dB = dC) 

 

Since the number of teeth are proportional to their pitch circle diameters, therefore, 

TA + 2 TB= TD or 40 + 2 TB = 90 

 TB = 25, and TC = 25 ...( TB = TC) 

Sr. 
No. 

 
Conditions of motion 

Revolutions of elements 

Arm Gear A 
Compound 

Gear B-C 
Gear D 

 

1 
Arm fixe, gear A rotates 
-1 revolution(clockwise) 

 

0 1 
 

TA 
TB  

 
TA 

 
 

TB    
TA 

 
T 

    
T 

 
T

 
 B     D   D 

2 
Arm fixed gear A rotates 
through - x revolutions 

0 x 
 x 

T
A

 

TB 

 x 
T

A
 

TD 

3 
Add - y revolutions to all 

elements 
y y y y 

4 Total motion y x  y x 
T

A  y 
TB 

x 
T

A  y 
TC 

 

1. Speed of arm when A makes 1 revolution clockwise and D makes half revolution 
anticlockwise 
Since the gear A makes 1 revolution clockwise, therefore from the fourth row of the 
table, x  y  1 or x  y  1 ...(1) 



 

 

0.04 revolution(Anticlockwise) 

Speedof arm 0.308revolution (Clockwise) 

 

Also, the gear D makes half revolution anticlockwise, therefore 

x 
TA  y  

1
 

TD 2 

x  
40 

 y  
1

 
90 2 

40x  90y  45 

x  2.25y  1.125 .................................. (2) 

 
From equations (1) and (2), 

x  1.04 and y  0.04 

Speedofarm  y  (0.04)  0.04 

2. Speed of arm when A makes 1 revolution clockwise and D is stationary 
Since the gear A makes 1 revolution clockwise, therefore from the fourth row of the 

table, 

x  y  1 

x  y  1 ...(3) 

Also the gear D is stationary, therefore 

x 
TA  y  0 
TD 

x  
40 

 y  0 

90 
40x  90y  0 

x  2.25y  0 ...(4) 

From equations (3) and (4), 

Speedof arm  y  0.308 

Example 6.15. In an epicyclic gear train, the internal wheels A and B and compound 
wheels C and D rotate independently about axis O. The wheels E and F rotate on pins fixed 
to the arm G. E gears with A and C and F gears with B and D. All the wheels have the same 
module and the number of teeth is: TC = 28; TD = 26; TE = TF = 18. 1. Sketch the 
arrangement; 2. Find the number of teeth on A and B; 3. If the arm G makes 100 r.p.m. 
clockwise and A is fixed, find the speed of B; and 4. If the arm G makes 100 r.p.m. 
clockwise and wheel A makes 10 r.p.m. counter clockwise; find the speed of Wheel B. 
Solution: 

 
Given: TC = 28 ; TD = 26 ; TE = TF = 18 



 

 

 
 

 
1. Sketch the arrangement 

The arrangement is shown in Fig. 

 

Fig. 6.15 
2. Number of teeth on wheels A and B 

TA = Number of teeth on wheel A, and 
TB = Number of teeth on wheel B. 

If dA , dB , dC , dD , dE and dF are the pitch circle diameters of wheels A, B, C, D, E and F 
respectively, then from the geometry of Fig. 

dA = dC + 2 dE 

And dB = dD + 2 dF 

Since the number of teeth are proportional to their pitch circle diameters, for the 
same module, therefore 

TA = TC + 2 TE = 28 + 2 = 64 

And TB = TD + 2 TF = 26 + 2 = 62 

3. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A is fixed 
First of all, the table of motions is drawn as given below: 

 

Sr. 
No 

 
Conditions of motion 

Revolutions of elements 

Arm 
G 

Wheel 
A 

Wheel 
E 

Compound 
wheel C-D 

Wheel F Wheel B 

 

 
1 

 
Arm fixe, A rotates 

+1 revolution 
(Anti clockwise) 

 

 
0 

 

1 

 
 

TA 
TE 

 
TA 

 
TE 

TE TC 

 
T

A
 

 

TC 

 

 
TA 

 
TD 

TC TF 

 
TA 

 
TD 

 
TF 

TC TF TB 

  
TA  

TD
 

TC TB 
 

2 
Arm fixed A rotates 

through + x revolutions 

 

0 x  x 
T

A
 

 

TE 

x 
T

A
 

 

TC 

 x  
T

A  
T

D
 

  

TC TF 

 x  
T

A  
T

D
 

  

TC TB 

 
3 

Add +y revolutions to 
all elements 

 

 y 

 

 y 

 

 y 

 

 y 

 

 y 

 

 y 

4 Total motion  y x  y 
x 

T
A  y 

TE 

y  x 
T

A 
 

TC 

y  x  
T

A  
T

D
 

TC TF 

 y  x  
T

A  
T

D
 

TC TB 



 

 

Speedof wheel B  4.2 r.p.m (Clockwise) 

Speed of wheel B 5.4r.p.m (Anticlockwise) 

 
 

 

Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table 
 

y = 100 

 

Also, the wheel A is fixed, therefore from the fourth row of the table, 

x + y = 0 or x = -y=100 
 

Speedofwheel B  y  x 
TA  

TD
 

TC TB 

 -100  100  
64 

 
26

 

28 62 
 -100  95.8 r.p.m.- 4.2r.p.m 

4. Speed of wheel B when arm G makes 100 r.p.m. clockwise and wheel A makes 10 r.p.m. 

counter clockwise 

Since the arm G makes 100 r.p.m. clockwise, therefore from the fourth row of the table 
 

y  100 ...(3) 

Also the wheel A makes 10 r.p.m. counter clockwise, therefore from the fourth row of the 
table, 

x  y  10 

x  10  y 

x  10  100 

x  110 ...(4) 

Speed of wheel B   y  x 
TA  

TD
 

TC TB 

 100  110  
64 

 
26

 
28 62 

 100  105.4 r.p.m 

 5.4 r.p.m 

 

Example 6.16. Fig. shows diagrammatically a compound epicyclic gear train. Wheels A , D 
and E are free to rotate independently on spindle O, while B and C are compound and 
rotate together on spindle P, on the end of arm OP. All the teeth on different wheels have 
the same module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally. Find 
the number of teeth on wheels D and E which are cut internally. If the wheel A is driven 
clockwise at 1 r.p.s. while D is driven counter clockwise at 5 r.p.s., determine the 
magnitude and direction of the angular velocities of arm OP and wheel E. 



 

 

TE 72 TD  56 

 

 

 
 

Fig. 6.16 

Solution: 
Given: TA 12; TB  30; TC 14; NA 1 r.p.s.; ND  5r.p.s 

Number of teeth on wheels D and E 
 

Let TD and TE be the number of teeth on wheels D and E respectively. Let dA , dB , dC , dD and 
dE be the pitch circle diameters of wheels A, B, C, D and E respectively. From the geometry 
of the figure, 

dE  dA    
2dB and dD = dE (dB dC) 

Since the number of teeth are proportional to their pitch circle diameters for the same 
module, therefore 

 
TE     TA     

2TB TD    TE   (TB  TC) 

TE  12  2 30 TD 72 (30  14) 

 
Magnitude and direction of angular velocities of arm OP and wheel 

 
The table of motions is drawn as follows: 

 

Sr. 
No. 

 
Condition of motion 

Revolutions of elements 

Arm 
Wheel 

A 
Compound 
wheel B-C 

Wheel D Wheel E 

 
1 

Arm fixe, gear A 
rotates 

-1 
revolution(clockwise) 

 
0 

 
-1 

 

 
TA 
TB 

 

 
TA  

TC 

TB TD 

 

 
T

A  
T

B   
T

A 

TB TE TE 

 

2 
Arm fixed gear A 

rotates through - x 
revolutions 

 

0 

 

x  x 
T

A
 

 

TB 

 x 
T

A  
T

C
 

  

TB TD 

 x 
T

A
 

 

TE 

3 
Add - y revolutions to 

all elements 
y y y y y 

4 Total motion y x  y x 
T

A  y 
TB 

x 
T

A  
T

C  y 
TB TD 

x 
T

A  y 
TE 



 

 

 4.452  27.964rad / sec (Anti clockwise) 

 33.68 rad / sec (Anti clockwise) 

 

Since the wheel A makes 1 r.p.s. clockwise, therefore from the fourth row of the table, 
x  y  1 

x  y  1 (1) 

Also, the wheel D makes 5 r.p.s. counter clockwise, therefore 

x 
TA  

TC  y  5 

TB TD 

x 
TA  

TC  y  5 

TB TD 

x 
12 

 
14 

 y  5 
30 56 

0.1x  y  5 (2) 

From equations (1) and (2), 

x  5.45 and y  -4.45 

 
Angular velocity of arm OP 

 y  (4.45)  4.45 r.p.s 

And angular velocity of wheel E 

 x 
TA  y 
TE 

 5.45 
12 

(4.45) 
72 

 5.36 r.p.s 

 5.36 2

Example 6.17. Fig shows an epicyclic gear train known as Ferguson’s paradox. Gear A is 
fixed to the frame and is, therefore, stationary. The arm B and gears C and D are free to 
rotate on the shaft S. Gears A, C and D have 100, 101 and 99 teeth respectively. The planet 
gear has 20 teeth. The pitch circle diameters of all are the same so that the planet gear P 
meshes with all of them. Determine the revolutions of gears C and D for one revolution of 
the arm B. 

 

Fig. 6.17 



 

 

 

 

Solution: 

Given : TA = 100 ; TC = 101 ; TD = 99 ;TP = 20 

The table of motions is given below: 
 

Sr. 

No. 
Condition of motion 

Revolutions of elements 

Arm B Gear A Gear C Gear D 

 
1 

Arm B fixe, gear A rotates 

+1 

revolution(anticlockwise) 

 
0 

 
+1 

 
TA  

TC  
TA  

TC  
TA  

TC TD TD 

2 
Arm B fixed gear A rotates 

through + x revolutions 
0 x 

 x 
T

A
 

TC 
x 

TA 

TD 

3 
Add + y revolutions to all 

elements 
 y  y  y  y 

4 Total motion  y x  y y  x 
T

A
 

TC 

y  x 
T

A
 

TD 

The arm B makes one revolution, therefore 
y = 1 

Since the gear A is fixed, therefore from the fourth row of the table, 

x + y = 0 

x  y  1 

Let NC and ND = Revolutions of gears C and D respectively. 

From the fourth row of the table, the revolutions of gear C, 

N  y  x 
TA

 
C 

TC 

1  1 
100

 

101 

 
And the revolutions of gear D, 

N  y  x 
TA

 

 

 1 
100 

TD 
99 

From above we see that for one revolution of the arm B, the gear C rotates through 1/101 

Revolution in the same direction and the gear D rotates through 1/99 revolutions in the 

opposite direction. 

Example 6.18. Fig. shows an epicyclic gear train. Pinion A has 15 teeth and is rigidly fixed 
to the motor shaft. The wheel B has 20 teeth and gears with A and also with the annular 

N 
C 

 1   

101 

 N     
1
 

D 
99 

D 



 

 

 

fixed wheel E. Pinion C has 15 teeth and is integral with B (B, C being a compound gear 
wheel). Gear C meshes with annular wheel D, which is keyed to the machine shaft. The 
arm rotates about the same shaft on which A is fixed and carries the compound wheel B, 
C. If the motor runs at 1000 r.p.m., find the speed of the machine shaft. Find the torque 
exerted on the machine shaft, if the motor develops a torque of 100 N-m. 

 

Fig. 6.18 
 

Solution: 

 
Given : TA = 15 ; TB = 20 ; TC = 15 ; NA = 1000 r.p.m.; 

Torque developed by motor (or pinion A) = 100 N-m 

 
1. Speed of the machine shaft 
The table of motions is given below: 

 

 
Sr. 
No. 

 

Condition of motion 

Revolution of element 

 

Arm 
Pinion 

A 

Compoun 
d wheel 

D-C 

 

Wheel D 
 

Wheel E 

 
1 

Arm fixe, gear A rotates 
+1 

revolution(anticlockwis 
e) 

 
0 

 
+1 

 

 
TA 

TB 

 

 
TA  

TC 

TB TD 

 
T

A  
T

B   
T

A 

TB TE TE 

 
2 

Arm fixed gear A 
rotates through + x 

revolutions 

 
0 

 

x 
 x 

T
A

 

TB 

x 
T

A  
T

C
 

TB TD 

x 
T

A
 

TE 

3 
Add + y revolutions to 

all elements 
 y  y  y  y  y 

 
4 

 
Total motion 

 

 y 

 

x  y y  x 
T

A 
 

TB 

y  x 
T

A  
T

C
 

y  x 
T

A 
 

TE 
TB TD 

 

First of all, let us find the number of teeth on wheels D and E. Let TD and TE be the number 
of teeth on wheels D and E respectively. Let dA, dB, dC, dD and dE be the pitch circle 
diameters of wheels A, B, C, D and E respectively. From the geometry of the figure, 

 
dE = dA + 2 dB and dD = dE-(dB -dC) 



 

 

     A   

ND  37.15 (Anticlockwise) 

 

 

Since the number of teeth are proportional to their pitch circle diameters, therefore, 

TE = TA + 2 TB = 15 + 220 = 55 

TD = TE (TB  TC)  55 (20  15)  50 

 
We know that the speed of the motor or the speed of the pinion A is 1000 r.p.m. 

Therefore 
x + y = 1000 ...(1) 

Also, the annular wheel E is fixed, therefore 
 

y  x 
TA  0 

TE 

 y  x 
TA

 

TE 

 y  x 
15

 

55 

 y  0.273x 

From equations (1) and (2), 

...(2) 

 

x = 786 and y = 214 

Speedofmachineshaft Speedof wheel D 

N y  x 
TA  

TC
 

D 

TB TD 

214  786  
15 

 
15

 
20 50 

 37.15 r.p.m. 

Torque exerted on the machine shaft 
We know that 

Torque developed by motor  Angular speed of motor 

Torque exerted on machine shaft Angular speed of machine shaft 

100 A Torque exerted on machine shaft D 

Torque exerted on machine shaft 100  



D 

100  
NA   100  

1000
 

ND 37.5 

Example 6.19. An epicyclic gear train consists of a sun wheel S, a stationary internal gear E 
and three identical planet wheels P carried on a star- shaped planet carrier C. The sizes of 
different toothed wheels are such that the planet carrier C rotates at 1/5th of the speed of 
the sun wheel S. The minimum number of teeth on any wheel is 16. The driving torque on 

Torque exerted on machine shaft 2692 Nm 



 

 

 

the sun wheel is 100 N-m. Determine: 1. Number of teeth on different wheels of the train, 
and 2. torque necessary to keep the internal gear stationary. 
Solution: 

Given NC  
NS 

5 
 

 
 

Fig. 6.19 
1. Number of teeth on different wheels 

 
The arrangement of the epicyclic gear train is shown in Fig.. Let TS and TE be the 
number of teeth on the sun wheel S and the internal gear E respectively. The table of 
motions is given below: 

 

Sr. 

No. 

 
Conditions of motion 

Revolutions of elements 

Plant carrier 

C 

Sun wheel 

S 

Planet 

Wheel P 
Internal Gear E 

 
1 

Planet carrier C fixed, 
sun wheel S rotates 
through + 1 revolution 
(anticlockwise) 

 
0 

 
+1 

 

 
TS 
TP 

 

 
T

S  
T

P   
T

S 

TP TE TE 

 

2 
Planet carrier C fixed, 
sun wheel S rotates 
through + x revolutions 

 

0 
 

x 
 x 

T
S

 

TP 

x 
T

S
 

TE 

3 
Add + y revolutions to 

all elements 
 y  y  y  y 

4 Total motion  y x  y y  x 
T

S
 

TP 

y  x 
T

S
 

TE 

 

We know that when the sun wheel S makes 5 revolutions, the planet carrier C makes 1 
revolution. Therefore from the fourth row of the table, 

 

y   1, and x  y  5 

 
x  4 



 

 



TE  4 16  64 

TP  24 

400 Nm 

 

Since the gear E is stationary, therefore from the fourth row of the table, 
 

y  x 
TS  0 

TE 

1 4 
TS  0 

TE 

TE  4TS 

 
Since the minimum number of teeth on any wheel is 16, therefore let us take the number of 
teeth on sun wheel, 

 

TS  16 

Let dS, dP and dE be the pitch circle diameters of wheels S, P and E respectively. Now from 
the geometry of Fig 

dS + 2 dP= dE 

 
Assuming the module of all the gears to be same, the number of teeth are proportional to 
their pitch circle diameters. 

TS 2 TP TE 

16  2TP  64 

2. Torque necessary to keep the internal gear stationary 
We know that 

Torque on S Angular speed of S  Torque on C Angular speed of C 

100 S Torque on CC 

Torque on C 100  


C 

100  
NS

 

NC 

100  5 

Torque on C500 Nm 

Torque necessary to keep the internal gear stationary 

500  100 

S 
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7.1 Introduction 

 A cam is a rotating machine element which gives reciprocating or oscillating 

motion to another element known as follower. 

 The cam and the follower have a line contact and constitute a higher pair. The 

cams are usually rotated at uniform speed by a shaft, but the follower motion is 

pre-determined and will be according to the shape of the cam. The cam and 

follower is one of the simplest as well as one of the most important mechanisms 

found in modern machinery today. 

 The cams are widely used for operating the inlet and exhaust valves of internal 

combustion engines, automatic attachment of machineries, paper cutting 

machines, spinning and weaving textile machineries, feed mechanism of 

automatic lathes etc. 

 

7.2 Classification of Followers 

 The followers may be classified as discussed below : 
 

Fig. 7.1 classification of follower 



 

 

7.2.1 According to surface in contact 

a Knife edge follower 
o When the contacting end of the follower has a sharp knife edge, it is 

called a knife edge follower, as shown in Fig. 7.1 (a). 
o The sliding motion takes place between the contacting surfaces (i.e. the 

knife edge and the cam surface). It is seldom used in practice because the 
small area of contacting surface results in excessive wear. In knife edge 
followers, a considerable side thrust exists between the follower and the 
guide. 

 

b Roller follower 
o When the contacting end of the follower is a roller, it is called a roller 

follower, as shown in Fig. 7.1 (b). Since the rolling motion takes place 
between the contacting surfaces (i.e. the roller and the cam), therefore 
the rate of wear is greatly reduced. 

o In roller followers also the side thrust exists between the follower and the 
guide. The roller followers are extensively used where more space is 
available such as in stationary gas and oil engines and aircraft engines. 

c Flat faced or mushroom follower 
o When the contacting end of the follower is a perfectly flat face, it is called 

a flat-faced follower, as shown in Fig. 7.1 (c). It may be noted that the side 
thrust between the follower and the guide is much reduced in case of flat 
faced followers. 

o The only side thrust is due to friction between the contact surfaces of the 
follower and the cam. The relative motion between these surfaces is 
largely of sliding nature but wear may be reduced by off-setting the axis 
of the follower, as shown in Fig. 7.1 (f) so that when the cam rotates, the 
follower also rotates about its own axis. 

o The flat faced followers are generally used where space is limited such as 
in cams which operate the valves of automobile engines. 

 

d Spherical faced follower 
o When the contacting end of the follower is of spherical shape, it is called 

a spherical faced follower, as shown in Fig. 7.1 (d). It may be noted that 
when a flat-faced follower is used in automobile engines, high surface 
stresses are produced. In order to minimize these stresses, the flat end of 
the follower is machined to a spherical shape. 

 

7.2.2 According to the motion of follower 

a Reciprocating or Translating Follower 
o When the follower reciprocates in guides as the cam rotates uniformly, it 

is known as reciprocating or translating follower. The followers as shown 
in Fig. 7.1 (a) to (d) are all reciprocating or translating followers. 

b Oscillating or Rotating Follower 
o When the uniform rotary motion of the cam is converted into 

predetermined oscillatory motion of the follower, it is called oscillating or 
rotating follower. The follower, as shown in Fig 7.1 (e), is an oscillating or 
rotating follower. 



 

 

 
 

7.2.3 According to the path of motion of the follower 

a Radial Follower 
o When the motion of the follower is along an axis passing through the 

centre of the cam, it is known as radial follower. The followers, as shown 
in Fig. 7.1 (a) to (e), are all radial followers. 

b Off-set Follower 
o When the motion of the follower is along an axis away from the axis of 

the cam centre, it is called off-set follower. The follower, as shown in Fig. 
7.1 (f), is an off-set follower. 

7.3 Classification of cams 

a Radial or Disc cam 
o In radial cams, the follower reciprocates or oscillates in a direction 

perpendicular to the cam axis. The cams as shown in Fig. 7.1 are all radial 
cams. 

 

b Cylindrical cam 
o In cylindrical cams, the follower reciprocates or oscillates in a direction 

parallel to the cam axis. The follower rides in a groove at its cylindrical 
surface. A cylindrical grooved cam with a reciprocating and an oscillating 
follower is shown in Fig. 7.2 (a) and (b) respectively. 

 

Fig. 7.2 cylindrical cam 

 

7.4 Terms used in radial cams 

a Base circle 

o It is the smallest circle that can be drawn to the cam profile. 

b Trace point 
o It is a reference point on the follower and is used to generate the pitch 

curve. In case of knife edge follower, the knife edge represents the trace 
point and the pitch curve corresponds to the cam profile. In a roller 
follower, the centre of the roller represents the trace point. 

c Pressure angle 
o It is the angle between the direction of the follower motion and a 

normal to the pitch curve. This angle is very important in designing a 
cam profile. If the pressure angle is too large, a reciprocating follower 



 

 

will jam in its bearings. 
 

d Pitch point 

o It is a point on the pitch curve having the maximum pressure angle. 

e Pitch circle 
o It is a circle drawn from the centre of the cam through the pitch points. 

f Pitch curve 
o It is the curve generated by the trace point as the follower moves 

relative to the cam. For a knife edge follower, the pitch curve and the 
cam profile are same whereas for a roller follower, they are separated 
by the radius of the roller. 

g Prime circle 
o It is the smallest circle that can be drawn from the centre of the cam 

and tangent to the pitch curve. For a knife edge and a flat face follower, 
the prime circle and the base circle are identical. For a roller follower, 
the prime circle is larger than the base circle by the radius of the roller. 

h Lift or Stroke 
o It is the maximum travel of the follower from its lowest position to the 

topmost position. 
 
 

 
Fig. 7.3 terms used in radial cams 



 

 

 
 

7.5 Motion of follower 

 The follower, during its travel, may have one of the following motions: 

a Uniform velocity 

b Simple harmonic motion 

c Uniform acceleration and retardation 

d Cycloidal motion 

7.6 Displacement, Velocity and Acceleration Diagrams when the 

Follower Moves with Uniform Velocity 

 The displacement, velocity and acceleration diagrams when a knife-edged 

follower moves with uniform velocity are shown in Fig. 7.4 (a), (b) and (c) 

respectively. 

 The abscissa (base) represents the time (i.e. the number of seconds required for 

the cam to complete one revolution) or it may represent the angular 

displacement of the cam in degrees. The ordinate represents the displacement, 

or velocity or acceleration of the follower. 

 Since the follower moves with uniform velocity during its rise and return stroke, 

therefore the slope of the displacement curves must be constant. In other words, 

AB1 and C1D must be straight lines. 

 
 

Fig. 7.4 displacement, velocity and 
acceleration diagrams 

Fig. 7.5 modified displacement, velocity 
acceleration diagrams 

 

 A little consideration will show that the follower remains at rest during part of 

the cam rotation. The periods during which the follower remains at rest are 



 

 

known as dwell periods, as shown by lines B1C1 and DE in Fig. 7.4 (a). From Fig. 

7.4 (c), we see that the acceleration or retardation of the follower at the 

beginning and at the end of each stroke is infinite. This is due to the fact that the 

follower is required to start from rest and has to gain a velocity within no time. 

This is only possible if the acceleration or retardation at the beginning and at the 

end of each stroke is infinite. These conditions are however, impracticable. 

 In order to have the acceleration and retardation within the finite limits, it is 

necessary to modify the conditions which govern the motion of the follower. This 

may be done by rounding off the sharp corners of the displacement diagram at 

the beginning and at the end of each stroke, as shown in Fig. 7.5 (a). By doing so, 

the velocity of the follower increases gradually to its maximum value at the 

beginning of each stroke and decreases gradually to zero at the end of each 

stroke as shown in Fig. 7.5 (b). 

 The modified displacement, velocity and acceleration diagrams are shown in Fig. 

7.5. The round corners of the displacement diagram are usually parabolic curves 

because the parabolic motion results in a very low acceleration of the follower 

for a given stroke and cam speed. 

 

7.7 Displacement, Velocity and Acceleration Diagrams when the 

Follower Moves with Simple Harmonic Motion 

 The displacement, velocity and acceleration diagrams when the follower moves 

with simple harmonic motion are shown in Fig. 7.6 (a), (b) and (c) respectively. 

The displacement diagram is drawn as follows: 

a Draw a semi-circle on the follower stroke as diameter. 

b Divide the semi-circle into any number of even equal parts (say eight). 

c Divide the angular displacements of the cam during out stroke and return 

stroke into the 

same number of equal parts. 

d The displacement diagram is obtained by projecting the points as shown in Fig. 

7.6 (a). 

 The velocity and acceleration diagrams are shown in Fig. 7.6 (b) and (c) 

respectively. Since the follower moves with a simple harmonic motion, therefore 

velocity diagram consists of a sine curve and the acceleration diagram is a cosine 

curve. 

 We see from Fig. 7.6 (b) that the velocity of the follower is zero at the beginning 

and at the end of its stroke and increases gradually to a maximum at mid-stroke. 

On the other hand, the acceleration of the follower is maximum at the beginning 

and at the ends of the stroke and diminishes to zero at mid-stroke. 



 

 

 

 
 

 
 Let, 

 

 
S = Stroke of the follower 

Fig. 7.6 acceleration diagram 

Ɵ0 and ƟR = Angular displacement of the cam during out stroke and return stroke 

of the follower respectively 

ω = angular velocity of cam 

 Time required for the outstroke of the follower in second 

𝑡0 = 
𝜃0 

𝜔 
 Consider a point P moving at uniform speed ωp radians per sec round the 

circumference of a circle with the stroke S as diameter, as shown in Fig. 7.7 the 

point (which is the projection of a point P on the diameter) executes a simple 

harmonic motion as the point P rotates. The motion of the follower is similar to 

that of point P’. 

 Peripheral speed of the point P’ 

𝑣𝑝 = 
𝜋 × 𝑠 

× 
2 

1 
=

 

𝑡0 

𝜋 × 𝑠 
× 

2 

𝜔 
 

 

𝜃0 
 and maximum velocity of the follower on the outstroke, 

𝑣0 = 𝑣𝑝 = 
𝜋 × 𝑠 

× 
2 

𝜔 
=

 

𝜃0 

𝜋 × 𝜔 × 𝑠 2 

𝜃0 



 

 

 

 

Fig. 7.7 motion of a point 

 
 We know that the centripetal acceleration of the point P 

𝑣 2 𝜋 × 𝜔 × 𝑠 2 2 𝜋 2 × 𝜔2    × 𝑠 
𝑎𝑝 =    𝑝   = ( ) × =     

 

𝑜𝑝 2 𝜃0 𝑠 2 × (𝜃0)2 

 Maximum acceleration of the follower on the outstroke, 
𝜋 2 × 𝜔2 × 𝑠 

𝑎0 = 𝑎𝑝 = 
2 × (𝜃0)2 

 Similarly, maximum velocity of the follower on the return stroke, 
𝜋 × 𝜔 × 𝑆 

𝑣𝑅 = 
2 𝜃

 

 and maximum acceleration of the follower on the return stroke 
𝜋 2𝜔2 𝑆 

𝑎𝑅 = 
2 (𝜃𝑅)2 

7.8 Displacement, Velocity and Acceleration Diagrams when 

the Follower Moves with Uniform Acceleration and 

Retardation 

 The displacement, velocity and acceleration diagrams when the follower moves 

with uniform acceleration and retardation are shown in Fig. 7.8 (a), (b) and (c) 

respectively. We see that the displacement diagram consists of a parabolic curve 

and may be drawn as discussed below: 

a Divide the angular displacement of the cam during outstroke (Ɵ) into any even 

number of equal parts and draw vertical lines through these points as shown in 

fig. 7.8 (a) 

b Divide the stroke of the follower (S) into the same number of equal even parts. 

c Join Aa to intersect the vertical line through point 1 at B. Similarly, obtain the 

other points C, D etc. as shown in Fig. 20.8 (a). Now join these points to obtain 

the parabolic curve for the out stroke of the follower. 

d In the similar way as discussed above, the displacement diagram for the follower 

during return stroke may be drawn. 

𝑅 



 

 

 We know that time required for the follower during outstroke, 

𝑡0 = 
𝜃0 

𝜔 
 and time required for the follower during return stroke, 

𝑡𝑅 = 
𝜃𝑅 

𝜔 
 Mean velocity of the follower during outstroke 

𝑆 
𝑣0 = 𝑡0

 

Fig. 7.8 Displacement, Velocity and Acceleration Diagrams when the Follower Moves with 

Uniform Acceleration and Retardation 



 

 

 
 
 

 Since the maximum velocity of follower is equal to twice the mean velocity, 

therefore maximum velocity of the follower during outstroke, 

𝑣0 = 
2 𝑆 

=
 

𝑡0 

2 𝜔 𝑆 
 

 

𝜃0 

 Similarly, maximum velocity of the follower during return stroke, 
2 𝜔 𝑆 

𝑣𝑅 = 
𝜃

 
𝑅 

 Maximum acceleration of the follower during outstroke, 
𝑣0 2 × 2 𝜔𝑠 

=
 

 
 

4 𝜔2. 𝑆 
 

𝑎0 = 
𝑡 ⁄2 

= 𝑡0 𝜃0 (𝜃 0)2 

 Similarly, maximum acceleration of the follower during return stroke, 
4 𝜔2 𝑆 

𝑎𝑅 =   
(𝜃𝑅 )2 

7.9 Displacement, Velocity and Acceleration Diagrams when 

the Follower Moves with cycloidal Motion 
 

 

0 



 

 

0 

 The displacement, velocity and acceleration diagrams when the follower moves 

with cycloidal motion are shown in Fig. (a), (b) and (c) respectively. We know that 

cycloid is a curve traced by a point on a circle when the circle rolls without 

slipping on a straight line. 

 We know that displacement of the follower after time t seconds, 

𝑥 = 𝑆 [ 
𝜃 

− 
1

 sin (
2 𝜋 𝜃

)] 

𝜃0 2 𝜋 
 Velocity of the follower after time t seconds, 

𝜃0 

𝑑𝑥 
= 𝑆 [ 

1 
× 

𝑑𝜃 
− 

2 𝜋 𝜃 cos (
2 𝜋 𝜃

) 
𝑑𝜃

] 
      

𝑑𝑡 𝜃0 𝑑 𝜃0 𝜃0 𝑑𝑡 

= 
𝑆 

× 
𝜃0 
𝜔 𝑆 

𝑡 
𝑑𝜃 

 
 

𝑑𝑡 

[1 − cos (
2 𝜋 𝜃

)] 

2 𝜋 𝜃 
𝜃0

 
= [1 − cos ( )] 

𝜃0 𝜃0 
 
 

 The velocity is maximum, when 

cos (
2 𝜋 𝜃

) = −1 
𝜃0 

2 𝜋 𝜃 

𝜃0 
= 𝜋 

𝜃 = 
𝜃0

 

2 

 Similarly, maximum velocity of the follower during return stroke, 
2 𝜔 𝑆 

𝑣𝑅 = 
𝜃𝑅

 

 Now, acceleration of the follower after time t sec, 𝑑2𝑥 
= 

𝜔𝑆 
 

 

2 𝜋[ 
2 𝜋 𝜃

) 
𝑑𝜃

]
 

 

𝑑𝑡2 𝜃0 
𝜃0 sin ( 

𝜃0 𝑑𝑡 

2 𝜋 𝜔2 𝑆 
= 

(𝜃 )2 sin ( 

 The acceleration is maximum, when 
  2 𝜋 𝜃 sin ( 

2 𝜋 𝜃
)
 

𝜃0 

𝜃0 
) = 1 

𝜃 = 
𝜃0

 

4 

2 𝜋 𝜔2 𝑆 
𝑎0 = 

(𝜃0)2 



 

 

𝜋 𝑠 

 
𝑎𝑅 = 

2 𝜋 𝜔2 𝑆 

(𝜃𝑅 )2 

 
 
 

7.10 Construction of cam profile for a Radial cam 

 In order to draw the cam profile for a radial cam, first of all the displacement 

diagram for the given motion of the follower is drawn. Then by constructing the 

follower in its proper position at each angular position, the profile of the working 

surface of the cam is drawn. 

 In constructing the cam profile, the principle of kinematic inversion is used, i.e. 

the cam is imagined to be stationary and the follower is allowed to rotate in the 

opposite direction to the cam rotation. 

 

7.11 Examples based on cam profile 
 
 

7.11.1 Draw the profile of a cam operating a knife-edge follower having a lift of 30 

mm. the cam raises the follower with SHM for 150⁰ of the rotation followed by a 

period of dwell for 60⁰. The follower descends for the next 100⁰ rotation of the 

cam with uniform velocity, again followed by a dwell period. The cam rotates at a 

uniform velocity of 120 rpm and has a least radius of 20 mm. what will be the 

maximum velocity and acceleration of the follower during the lift and the return? 

 S = 30 mm : Øa = 150⁰ ; N = 120 rpm ; 

 𝛿1 = 60°; rc = 20 mm : 𝛿2 = 50° 

 During ascent: 

ω = 
2 π N 

=
 

60 

2 π × 120 
= 12.57 𝑟𝑎𝑑/𝑠 

60 

𝑣 = 
𝜋 × 𝜔 ×𝑠 = 

𝜋 × 12.57 × 30 
= 226.3

 
𝑚𝑎𝑥 

2 𝜃0 2 × 150 × 𝜋 
180 

𝜋2 × 𝜔2   × 𝑠 𝜋2  × 12.572   × 30 𝑚 
 

 
 During descent: 

𝑎𝑚𝑎𝑥 = 
2 × (𝜃0)2 

= 2 × (150 × 
  𝜋 ) 
180 

2 = 7.413 ⁄𝑠2 

𝜔 𝑆 
𝑣𝑚𝑎𝑥 = 

∅
 
𝑑 

𝑣𝑚𝑎𝑥 = 
12.57 × 30 

= 216 𝑚𝑚⁄
 

100 × 
180 

 

𝑓𝑚𝑎𝗑 = 0 



 

 

 

 

Fig. 7.10 

7.11.2 A cam with a minimum radius of 25 mm is to be designed for a knife-edge 

follower with the following data: 

To raise the follower through 35 mm during 60⁰ rotation of the cam 

Dwell for next 40⁰ of the cam rotation 

Descending of the follower during the next 90⁰ of the cam rotation 

Dwell during the rest of the cam rotation 

Draw the profile of cam if the ascending and descending of the cam with simple 

harmonic motion and the line of stroke of the follower is offset 10 mm from the 

axis of the cam shaft. 

What is the maximum velocity and acceleration of the follower during the ascent 

and the descent if the cam rotates at 150 rpm? 

 S = 35 mm : Øa = 60⁰ ; N = 150 rpm ; 

 𝛿1 = 40°; rc = 25 mm : Ød = 90⁰; x = 10 mm 



 

 

 During ascent:  

ω = 
2 π N 

=
 
 
2 π × 150 

= 5𝜋   
𝑟𝑎𝑑 

  

60 60 𝑠 𝜋 × 𝜔 ×𝑠 
= 

𝜋 × 5𝜋 × 35 
 𝑣𝑚𝑎𝑥 = 2 𝜃0 × 150 × 

𝜋  = 827.7 𝑚𝑚/𝑠2 
180 

𝜋 2 × 𝜔2   × 𝑠 = 𝜋2  × 5𝜋2   × 35 𝑚 
 𝑎𝑚𝑎𝑥 = 2 × (𝜃 )2   𝜋 2 = 38.882 ⁄𝑠2 

0 2 × (150 × ) 
180 

 
 

 
 During descent: 

𝑣𝑚𝑎𝑥 

 
= 

𝜋 × 𝜔 × 𝑠2 

𝜃0 

Fig. 7.11 

 

= 
𝜋 × 5𝜋 × 35 

2 × 90 × 𝜋 
180 

 
 

= 549.80 𝑚𝑚/𝑠 



 

 

120 × 𝜋 

𝜋2  × 𝜔2   × 𝑠 𝜋2  × 5𝜋 2 × 35 𝑚 
 𝑎𝑚𝑎𝑥 = 

2 × (𝜃0)2 
= 2 × (90 × 

  𝜋 ) 
180 

2 = 17.272 ⁄𝑠2 

7.11.3 A cam is to give the following motion to the knife-edged follower: 

To raise the follower through 30 mm with uniform acceleration and deceleration 

during 120⁰ rotation of the cam 

Dwell for the next 30⁰ of the cam rotation 

To lower the follower with simple harmonic motion during the next 90⁰ rotation 

of the cam 

Dwell for the rest of the cam rotation 

The cam has minimum radius of 30 mm and rotates counter-clockwise at a 

uniform speed of 800 rpm. Draw the profile of the cam if the line of stroke of the 

follower passes through the axis of the cam shaft. 

 S = 30 mm : Øa = 120⁰ ; N = 800 rpm ; 

 𝛿1 = 30°; rc = 30 mm : Ød = 90⁰; 
 During ascent: 

ω = 
2 π N 

=
 

 

2 π × 840 
= 88 

𝑟𝑎𝑑 
  

60 60 𝑠 

𝑣𝑚𝑎𝑥 = 
2 × 88 × 0.03 

= 2.52 𝑚⁄𝑠
 

 
 

180 

4 𝜔2. 𝑆 4 882 × 0.03 𝑚 
𝑎0 = 

 
 

(𝜃0)2 
=

 

 
(120 × 

  𝜋 ) 
180 

2 = 211.9 ⁄𝑠2 

 

 During descent: 

𝑣𝑚𝑎𝑥 = 
𝜋 × 𝜔 × 𝑠2 

𝜃0 

 
𝜋 × 88 × 0.03 

2 × 90 × 𝜋 = 2.64 𝑚𝑚/𝑠 
180 

𝜋 2 × 𝜔2   × 𝑠 𝜋2  × 882   × 0.03 𝑚 
𝑎𝑚𝑎𝑥 = 

2   × (𝜃 )2 =  
2 × (90 × 

  𝜋 ) 
180 

2 = 467.6 ⁄𝑠2 

 
 
 

 

= 
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Fig. 7.12 

7.11.4 Draw the profile of a cam operating a roller reciprocating follower and with 

the following data: 

Minimum radius of cam = 25 mm 

Lift = 30 mm 

Roller diameter = 15 mm 

The cam lifts the follower for 120⁰ with SHM followed by a dwell period of 30⁰. 

Then the follower lowers down during 150⁰ of the cam rotation with uniform 

acceleration and deceleration followed by dwell period. If the cam rotates at a 

uniform speed of 150 rpm. Calculate the maximum velocity and acceleration of 

the follower during the descent period. 

 S = 30 mm : Øa = 120⁰ ; N = 150 rpm ;Ød = 150⁰ 

 𝛿1 = 30°; rc = 25 mm : 𝛿2 = 60°; rr = 7.5 mm 
 
 



 

 

𝑑 

180 

) 

 

 

 
 

 

 
𝑣𝑚𝑎𝑥 

Fig. 7.13 

 
2 × 𝑠 × 𝜔 
  𝜑  

𝑑 

2 × 30 × 2×𝜋×150 

𝑣 = 60 = 360 𝑚/𝑠 
𝑚𝑎𝑥 150 × 𝜋  

4 × 𝑆 × 𝜔2 

ƒ𝑚𝑎𝑥 = 
(𝜑 )2 

4 × 30 × (2×𝜋×150 )
2 

ƒ = 60 = 4320 𝑚𝑚/𝑠2 
𝑚𝑎𝑥 

(150 ×  𝜋 2
 

180 

7.11.5 The following data relate to a cam profile in which the follower moves with 

uniform acceleration and deceleration during ascent and descent. 

Minimum radius of cam = 25 mm 

Roller diameter = 7.5 mm 

Lift = 28 mm 

Offset of follower axis = 12 mm towards right 

Angle of ascent = 60⁰ 

Angle of descent = 90⁰ 

Angle of dwell between ascent and descent = 45⁰ 

Speed of cam = 200 rpm 

= 



 

 

60 × 𝜋 

Draw the profile of the cam and determine the maximum velocity and the 

uniform acceleration of the follower during the outstroke and the return stroke. 

 S = 28 mm : Øa = 60⁰ ; N = 200 rpm ;Ød = 90⁰ 

 𝛿1 = 45°; rc = 25 mm : 𝛿2 = 165°; rr = 7.5 mm; x = 12 mm 
 

 

 

 
 During outstroke: 

Fig. 7.14 

 
2 × 𝑠 × 𝜔 

𝑣𝑚𝑎𝑥 = 
𝜑 

 
𝑣𝑚𝑎𝑥 

ƒ𝑚𝑎𝑥 = 

𝑑 

= 
2 × 28 × 20.94 

= 1.12 𝑚/𝑠
 

 
 

180 

4 × 𝑆 × 𝜔2 

(𝜑𝑑)2 



 

 

90 × 𝜋 

4 × 30 × (20.94)2 
ƒ𝑚𝑎𝑥 =   𝜋     2 = 44800 𝑚𝑚/𝑠2 

(60 × ) 

 During Return stroke: 
180 

 
2 × 𝑠 × 𝜔 

𝑣𝑚𝑎𝑥 = 
𝜑 

 
𝑣𝑚𝑎𝑥 

𝑑 

= 
2 × 28 × 20.94 

= 0.747 𝑚/𝑠
 

 
 

180 

ƒ𝑚𝑎𝑥 = 
4 × 𝑆 × 𝜔2 

(𝜑𝑑)2 

ƒ = 4 × 30 × (20.94)2 
 𝑚𝑎𝑥 

(90 × 𝜋 ) 
180 

2 = 19900 𝑚𝑚/𝑠2 

 

7.11.6 A flat-faced mushroom follower is operated by a uniform rotating cam. The 

follower is raised through a distance of 25 mm in 120⁰ rotation of the cam, 

remains at rest for next 30⁰ and is lowered during further 120⁰ rotation of the 

cam. The raising of the follower takes place with cycloidal motion and the 

lowering with uniform acceleration and deceleration. However, the uniform 

acceleration is 2/3 of the uniform deceleration. The least radius of the cam is 25 

mm which rotates at 300 rpm. 

Draw the cam profile and determine the values of the maximum velocity and 

maximum acceleration during rising and maximum velocity and uniform 

acceleration and deceleration during lowering of the follower. 

 S = 30 mm : Øa = 60⁰ ; N = 200 rpm ;Ød = 90⁰ 

 𝛿1 = 45°; rc = 25 mm : 𝛿2 = 165°; rr = 7.5 mm; x = 12 mm 





 

 







 During ascent: 

Fig. 7.15 

 
2 × 𝑠 × 𝜔 

𝑣𝑚𝑎𝑥 = 
 

 

𝜑𝑎 

𝑣 = 
2 × 25 × 31.4 

= 0.75 
𝑚 

𝑚𝑎𝑥 
120 × 𝜋 𝑠 

180 

ƒ𝑚𝑎𝑥 = 
4 × 𝑆 × 𝜔2 

(𝜑𝑎)2 

4 × 30 × (31.4)2 𝑚𝑚 
ƒ𝑚𝑎𝑥 =  

(120 × 
  𝜋 ) 
180 

2 = 35310 
𝑠2

 

 
 

 

7.11.7 The following data relate to a cam operating an oscillating an oscillating roller 

follower: 

Minimum radius of cam = 44 mm 

Dia. Of roller = 14 mm 

Length of the arm = 40 mm 

Distance from fulcrum 

Centre from cam center = 50 mm 

Angle of ascent = 75⁰ 

Angle of descent = 105⁰ 

Angle of dwell in 



 

 

Highest position = 60⁰ 

Angle of oscillation of 

Follower = 28⁰ 

Draw the profile of the cam if the ascent and descent both take place with SHM. 

 
 S = 19.5 mm : Øa = 75⁰ ;Ød = 105⁰ 

 𝛿1 = 60°; rc = 22 mm : 𝛿2 = 120°; rr = 7.5 mm; 
 
 

 

Fig. 7.16 



 

 

7.12 Excercise 
 

1. Draw the cam operating knife edge follower from following data 
(i) Follower to move out through distance of 20mm during 120°. 
(ii) Follower to dwell for next 60°. 
(iii) Follower to return to its initial position during 90°. 
(iv) Follower to dwell for remaining cam rotation 
The cam rotates at 500rpm. The minimum radius of cam is 40mm and line of 
follower is offset 15mm from the axis of the cam and displacement to take place 
with uniform acceleration and retardation both inward and outward stroke. 
[December, 2014] 

 
2. A cam rotating in clockwise direction at a uniform speed of 1000 rpm is required 

to give a roller follower the motion defined below: 
1. Follower moves outwards through 50 mm during 120° of cam rotation. 
2. Follower dwells for next 60° of cam rotation 
3. Follower returns to its original position during next 90° of cam rotation 
4. Follower dwells for rest of cam rotation 
The minimum radius of the cam is 50 mm and the diameter of roller is 10 mm. 
The line of stroke of follower is off-set by 20 mm from the axis of the cam shaft. If 
the displacement of the follower is to take place with uniform and equal 
acceleration and retardation on both the strokes. Draw the profile of the cam and 
find the max velocity and acceleration during the outwards and return strokes. 
[January, 2016] 

 
3. Draw the profile of a cam rotating with an oscillating roller follower to the 

specification given below: 
1. Follower moves outwards through an angular displacement of 200 during first 
120° of cam rotation. 
2. Follower returns to its original position during next 120° of cam rotation 
3. Follower to dwell during the rest of cam rotation. 
The distance between the pivot center and roller center is 120mm, The distance 
between the pivot center and cam axis is 130mm , minimum radius of cam is 
40mm, radius of roller is 10 mm The displacement of the follower is to take place 
with SHM during outward stroke and inward stroke. [January, 2016] 

 
4. A cam drives a flat reciprocating follower in the following manner: 

During first 120° rotation of the cam, follower moves outward through a distance 
of 20 mm with S.H.M. The follower dwells during next 30° of cam rotation. During 
next 120° rotation of the cam, the follower moves inward with S.H.M. The follower 
dwells for the next 90° of cam rotation. The minimum radius of the cam is 25 mm. 
Draw the profile of the cam. [June, 2016] 

 
5. A cam operates an offset follower. The least radius of the cam is 50mm, roller 

diameter is 30mm, and offset is 20mm. The cam operates at 360 rpm. The angle 
of ascent is 48°, angle of dwell is 42° and angle of descent is 60°. The motion is 
SHM during ascent and uniform acceleration and retardation during descent. 
Draw the cam profile. Consider lift of cam as 40 mm. 



 

 

Also calculate max velocity and acceleration during descent. [January, 2017] 
 

6. A cam operates a flat-faced follower having uniform acceleration and retardation 
during ascent and descent. The least radius of the cam is 50mm. During descent, 
the retardation period is half of the acceleration period. The ascent lift is 37.5mm. 
The ascent is for 1/4th period, dwell for 1/4th , descent for 1/3th, and dwell for 
the remaining 1/6th period. The cam rotates at 600 rpm. Find the max velocity 
and acceleration during ascent and descent. 
Draw the cam profile. [January, 2017] 

 
7. A cam with 25 mm as minimum diameter is rotating clockwise as a uniform speed 

of 500 rpm and has to give the motion to the flat faced follower defined below: 
1. Outward stroke of 20 mm during 120° of cam rotation with simple harmonic 
motion 
2. Dwell for 30° cam rotation 
3. Return to its initial position during 120° of cam rotation with equal uniform 
acceleration and retardation 
4. Dwell for the remaining 90° cam rotation 
5. Layout the cam for the above mentioned motion of follower. [June, 2017] 

 
8. A cam with 30 mm as minimum diameter is rotating clockwise as a uniform speed 

of 1200 rpm and has to give the motion to the roller follower 10 mm diameter as 
defined below: 
1. Outward stroke of 25 mm during 120° of cam rotation with equal uniform 
acceleration and retardation 
2. Dwell for 60° cam rotation 
3. Return to its initial position during 90° of cam rotation with equal uniform 
acceleration and retardation 
4. Dwell for the remaining 90° cam rotation 
Layout the cam profile when the roller axis is offset to right by 5 mm. [June, 2017] 

 
9. Draw the cam profile for a disc cam and knife edge follower from the following 

data for one revolution of cam. 
(1) Angle of rise=60° (2) Follower lift=40 mm with uniform velocity (3) Angle of 
dwell =30° (4) Angle of fall= 60° where follower moves with uniform velocity (5) 
For remaining period of 210° the follower remains in same position (6) Diameter 
of base circle of cam= 50 mm. [November 2017] 

 
10. A cam is to be designed for a knife edge follower with the following data: (1) Cam 

lift=40 mm during 90° of cam rotation with SHM (2) Dwell for the next 30° (3) 
During the next 60° of the cam rotation, the follower returns to its original 
position with uniform velocity. (4) Dwell during the remaining 180°. 
Draw the profile of the cam when the line of stroke of the follower passes through 
the axis of the cam shaft. The radius of the base circle of the cam is 40 mm. 
[November 2017] 
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